Downloaded by CALIFORNIA INST OF TECHNOLOGY on October 28, 2022 | http://arc.aiaa.org | DOI: 10.2514/1.J061338

AIAA JOURNAL
Vol. 60, No. 8, August 2022

Molecules Diffusing in Air

Kaila M. Y. Coimbra* and Miya C. Y. Coimbra!

Check for
updates

On the Slip Correction Factor for Simple Gas

California Institute of Technology, Pasadena, California 91125

and

Carlos F. M. Coimbrai®
University of California San Diego, La Jolla, California 92093

https://doi.org/10.2514/1.J061338

We examine the functional form of the slip correction factor C(II), where II is a dimensionless group to be
determined, for simple (monoatomic, diatomic, and triatomic) gas molecules diffusing in air at normal conditions. We
express C(II) in terms of the molecular Reynolds number, Re,,, = u;d;, /2v;, where u; and d, are the Maxwell-
Boltzmann mean molecular speed and the kinetic diameter of the diffusing gas molecules, and v; is the kinematic
viscosity of the background gas (dry air). We show that the slip correction is given simply by C(Re,,,) = Re,, /Re; ,s,
where Re; , is a reference no-slip Reynolds number that depends only on the thermodynamic state and viscosity of
the background gas j. For dry air at 300 K and 1 atm, Re; ,,, = 1.36 X 1075, so that C(Re,,,) = 7.35 x 10*Re,,. The
approach presented here can be easily generalized to other gas media and leads to a remarkably simple correlation for
estimation of Schmidt numbers and binary diffusion coefficients for both stable and unstable trace gases in air. While
this correlation depends only on the molecular weight //; and the number of atoms in the molecule of the diffusing gas,
it performs competitively against more complex models.

Nomenclature

model constant in Eq. (12)
particle radius
model constant in Eq. (13)
slip correction factor as a function of dimensionless
group I1
binary diffusion coefficient for species i diffusing in
species j
kinetic diameter of species i
maximum energy of attraction in Lennard—Jones
potential [Eq. (11)]
= friction coefficient in Stokes—Einstein theory [Eq. (2)]
particle Knudsen number [Eq. (3)]
mean free path
mass of a single molecule
Avogadro’s number, 6.023 x 10% molecules/kmol
pressure
universal gas constant, 8314.5 J/(kmol - K)
Lagrangian velocity autocorrelation  coefficient
[Eq. 21)]

j.ns reference no-slip Reynolds number for background gas

species j

e, = molecular Reynolds number for species i
Schmidt number
temperature
i mean molecular speed
volume of atom or molecule in Fueller et al.’s model
= collision restitution or momentum accommodation
coefficient
ratio of molecular masses, M;/M j
Boltzmann’s constant, 1.38 x 10723 J/K

Q
~
|

>} =
1 Il

)
]

P/TZI N xS
37 = S
I | | A [ 1

=
8
1l

Nox
In

[SEESERN
1l

Received 2 October 2021; revision received 22 February 2022; accepted for
publication 24 February 2022; published online Open Access 28 March 2022.
Copyright © 2022 by CFM Coimbra. Published by the American Institute of
Aeronautics and Astronautics, Inc., with permission. All requests for copying
and permission to reprint should be submitted to CCC at www.copyright.com;
employ the eISSN 1533-385X to initiate your request. See also AIAA Rights
and Permissions www.aiaa.org/randp.

*Research Assistant. Student Member AIAA.

fGraduate Research Assistant, Graduate Aerospace Laboratories.

*Professor, Mechanical and Aerospace Engineering.

4744

u = dynamic viscosity

v = kinematic viscosity

p = specific mass

c = collision length (or diameter)

Xi = shape factor for monoatomic, diatomic, and triatomic
molecules

X1 = shape factor for monoatomic molecules, 1.00

X = shape factor for diatomic molecules, 1.23

X3 = shape factor for triatomic molecules, 1.39

Ip = shape factor for nonspherical particles

Q, = collision integral for viscosity and thermal conductivity

Qp = collision integral for binary diffusion
Subscripts

C = proposed model

CE = Chapman-Enskog model

cp = correlation path [Eq. (21)]

Ep = Epstein model

F = Fuller model

i = species i

j = species j (dry air)

P = particle

1. Introduction

HE diffusion of simple monoatomic, diatomic, and triatomic

gases in air plays a key role in many biological and physical
processes. On the physical side, a number of meteorological, clima-
tological, and aeronautical processes require precise knowledge of
binary diffusion coefficients for gas molecules in air [1,2]. For
example, industrial processes involving degassing of plastics during
thermal processing need to account for multiple gas species for
process control and environmental health monitoring [3]. In biologi-
cal systems, the transport of gas molecules and aerosols trough
alveoli and stomata is often controlled by diffusion at air-membrane
interfaces [4,5]. Heterogeneous (gas—surface) diffusion to suspended
aerosols in the atmosphere is, in some cases, limited by the diffusion
of inorganic compounds into the surrounding air. Many critical
aspects of atmospheric chemistry are directly affected by these air—
surface reactions at the lower atmosphere [6]. Above the homopause,
lighter gases segregate gravitationally by diffusion, and the binary
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diffusion coefficients for these unstable trace gases are difficult to
measure by conventional methods [7,8].

The general absence of independent experimental data for gas
diffusion coefficients in air is often circumvented by classical models
given the importance of the above-mentioned process. Well-estab-
lished models and experimental techniques exist only for a few well-
characterized, stable molecules. Tang et al. [6] compiled a list of
experimental binary diffusion coefficients for inorganic reactive trace
gases of relevance to atmospheric process and compared the exper-
imental values with Fueller’s semi-empirical method [9]. The
reported agreement was +30%. Tang et al. [6] conclude that “[t]
herefore, in cases where the diffusion of a trace gas has not been
measured, Fueller’s method can be used to estimate the diffusion
coefficient.” Earlier, Reid et al. [10] compared results of the Chap-
man—Enskog (CE) theory with those of Fueller’s (F) method against
experimental measurements for a wide variety of binary systems and
found the agreement between the CE theory and Fueller’s method
with experiments to be roughly equivalent, with a slight advantage to
Fueller’s method (7.5% vs 6.9% absolute average errors, respec-
tively). The discrepancy between £30% and £7% found in these
two studies is explained by the circular contamination of information
between experiments and semi-empirical models: model parameters
are adjusted to fit experimental results, so the better characterized a
binary gas system is, the more likely it is to have had its model
parameters adjusted to it. Because of this circular inference, model
errors for frequently studied stable gases are likely to be substantially
smaller than the model errors for less frequently studied gases.

Paradoxically, the binary diffusion coefficients for gases that are
critically important to the dynamics of the Earth’s atmosphere are still
poorly characterized. For example, the diffusion of water vapor in air
is not well characterized partially due to the highly polar nature of the
water molecule, but perhaps also due to the tendency of water
molecules to form molecular clusters [11]. Similarly, the diffusion
coefficient of ozone (Os) in air has never been measured directly [12]
until the very recent work by Langerberg and colleagues [8], who
used two complementary experimental techniques (arrested flow and
twin tube) to study diffusion coefficients of unstable trace gases of
atmospheric relevance. Langerberg et al. [8] report systematic errors
of the order of 7% for both experimental methods, which the authors
consider larger than the 5% systematic error for stable, nonpolar
molecules obtained by the CE theory with experimentally adjusted
coefficients for the Lennard—Jones potential. They also found that the
Fuller’s method overestimates the diffusion coefficients of inorganic
compounds with a systematic error smaller than 35%, and under-
estimates the diffusion coefficients of organic compounds with a
systematic error of less than 15%. Taking into consideration the
relevance of the transfer processes related to water vapor and trace
gases in the atmosphere, an analysis that yields a simple estimation
for binary diffusion coefficients in air seems in order.

The objectives of this work are as follows: 1) to extend the Stokes—
Einstein theory results for aerosols diffusing in air to the molecular
scale and, in doing so, to estimate the functional form of the slip
correction factor for ideal gas molecules of different shapes and
chemical compositions; 2) to compare the results obtained with the
newly derived slip correction factor with two of the most reliable
semi-empirical models, namely, CE (CE theory with Lennard—Jones
6-12 potential) and F (Fueller’s semi-empirical model); 3) to propose
a simple physics-based correlation for estimation of Schmidt (Sc;)
numbers and binary diffusion coefficients of polar and nonpolar,
stable and unstable trace gases diffusing in dry air with similar
uncertainties as those associated with both experiments and the most
reliable semi-empirical methods; and 4) to show that the extensive
results obtained for aerosol transport in air are compatible with the
transport of even the smallest molecules if appropriate slip factor
corrections are used.

II. Background

The theory of aerosol diffusion is well-developed and provides
accurate results for suspended particles as small as 2 nm (20 A) in
effective diameter [13,14]. The Brownian diffusion of a spherical

aerosol particle is expressed in terms of the Stokes—Einstein relation
as [13,15]

kgT
P = T

where kg is the Boltzmann constant (1.38 x 10723 J/K), T is the
absolute temperature of the background gas (bath) in kelvins, and f is
the friction coefficient given by [15,16]

D )

6rpa,y, 3rud,y,
f: H I){I — H 1)(1 (2)
c(m) c(m)

where a,, and d,, are the radius and the diameter of the particles, u is
the dynamic viscosity of the suspending gas (in our case dry air), v, is
a shape factor for nonspherical aerosols, and C(IT) is the slip correc-
tion factor that accounts for deviations from the continuum regime.
As shown in Eq. (2), it is customary to express the slip correction
factor C(IT) as the ratio between the aerodynamic drag coefficient at
the zero Knudsen number Kn,, (continuum) limit, ¥, and the actual
aerodynamic resistance exerted on the particle, F, [17]. Note also
that the friction coefficient f in Eq. (2) implies an infinitesimal value
for the particle Reynolds number (based on the radius of the particle,
a,, the fluid-to-particle relative velocity, W, and the viscosity of the
background gas, v, such that Re, = Wa, /v; — 0). Corrections for
higher particle Reynolds and Mach numbers are provided in the
recent review by Loth and collaborators [18].
Here we define the Knudsen number as

Kn,=-L 3)

where ¢ is the mean free path of the background gas molecules, and
d,, is the effective diameter of the diffusing particle (aerosol). The
mean free path for air molecules (¢;) is

7 _21/,_ ﬂ'M/ 1/2 4
J = 'Zj =Vrj 2RT ( )

where v; is the kinematic viscosity of dry air, i, is the mean molecular
speed of air molecules given by u; = /8R/zM;, R is the universal
gas constant (8314.5 J/[kmol - K]), and M; is the mean molecular
weight of air molecules (28.96 kg/kmol). Henceforth we assume dry
air to behave ideally and to be composed of 78% N, 21% O,, and 1%
Ar by volume. The kinematic and dynamic viscosities of dry air at
300 K and 101,325 Pa (1 atm) are assumed to be equal to 1.57 x
1073 m?/s and 1.84 x 10~ kg - m~! - s7!, respectively.

There is no purely mathematical theory for calculating the func-
tional form of the slip correction factor C(IT) from the continuum
(Kn, — 0) to the free molecule flow regimes (Kn, — o0), but very
accurate interpolation functions have been developed over the years
with the help of detailed experiments (see, e.g., [19-22]). These
correlations are based on the functional form originally proposed
by Cunningham [19]:

C(Kn,) =1+ Kn,(C, + Cye=C/Kny) 3)

where often-quoted values of C, are 2.514, 0.800, and 0.550 for
particles diffusing in air [16,20]. Based on Eq. (3), Dahneke [17] used
a very clever argument to determine the ratio of the adjusted length
scale for nonspherical particles that is valid over the entire range of
Kn,,, from continuum (Stokes) to free molecule flows. For particles
with aspect ratios of 2 and 3 in free molecule flow, the shape
corrections y, in Eq. (2) based on the statistical average of all
collision orientations in Brownian motion (see, e.g., [13]) are equal
to 1.23 and 1.39, respectively (see Table I of Ref. [17]). Because the
asymptote for the limit of K, — oo is a straight line, we adopt these
same values for diatomic and triatomic molecules. In other words,
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here we assume that the statistically averaged shape factor for all
diatomic molecules is y, = 1.23, and for all triatomic molecules is
x3 = 1.39. We will see that this very simple rule, which originated
from extensive studies of small aerosol particles in free molecule flow
and only depends on the number of atoms in each molecule, is very
effective in predicting the statistically averaged frictional forces act-
ing on nonspherical molecules, regardless of atomic mass ratios of
their nuclei.

For very large Kn, numbers in air, which correspond to either low
pressures, high temperatures, or very small aerosols, the friction
factor for spherical particles approaches the free molecule expression
first derived by Epstein [23] [this is also the limit for Kn, — oo of

Eq. Q)
2 2T\ 1/2 an
Ep 3 “rFi m; 8

where m is the effective mass of a molecule of air, and aris a collision
restitution (sometimes referred to as momentum accommodation)
coefficient that depends on the fraction of collisions between the
aerosol and the air molecules that are considered either specular or
diffusive. Values of a typically range from 0.8 to 1.0 for most
aerosols, and when no specific experimental information on the
partition is available, « is approximated as 0.9. Assuming ideal gas
behavior and recognizing that m; = M;/N,, (Na, = 6.023x
102 molecules/kmol), Eq. (6) can be expressed in the form of
Eq. (2) as

_ 6rud,[1 + (ax/8)]

9Kn 7

pr

p

With @ =0.9, the Epstein slip correction factor is simply
Cgp(Kn,) = 3.32 Kn,,. The linear dependence of Cg, on Kn, is
exact under the assumptions used to derive Eq. (6), which yields
results within a few percent or experimental values for near-spherical
aerosols with diameters larger than 1 nm (10 A), and within 10% of
experimental values for particles twice as small [13]. For particles
comparable in size with small molecules, use of Eq. (7) results in
substantially larger errors (40-50%). Equation (7) is not applicable
to molecules for two main reasons. First, in its derivation, due to its
much larger inertia, the velocity of the aerosol is assumed to be small
compared to the velocity of the background gas molecules [23,24].
This simplification alone excludes any particle with inertial mass
comparable to the molecular mass of the background gas. Second, the
quadratic dependence of the friction factor f on d, (recall that
Kn, = ¢;/d,) is certainly not applicable to molecules because the
effective diameter of a molecule is a very poor proxy for either its
inertia or its friction length scale. The empirical coefficients adopted
from experimental data for the restitution coefficients used in Eq. (7)
refer to aerosols that are roughly uniform in density, and therefore the
d% dependence assumes that the mass of aerosols of different sizes
varies with d?,. Because of the strong attraction of the positively
charged nucleus of heavy gas molecules, the effective electronic
cloud diameter of such molecules is only slightly larger than those
of the lightest molecules, even though their molecular weights may
be tens of times larger. As a relevant example, the lightest spherical
molecule, helium, is more than 30 times less massive than the xenon
molecule, but is only about 1.5 times smaller in size.

In this work, we show that the replacement of the molecular size by
the molecular mass and the simple shape factor discussed above as
proxies for the friction length yields a functional form of the slip
correction factor that is quite different from the one derived for
aerosols by Epstein. The proposed functional form provides unique
insight on the effective friction forces acting on molecules, and
results in a surprisingly simple estimate for the Schmidt number
(and therefore for the binary diffusion coefficient) of simple gases
in air. In Sec. III, and before we introduce the new slip correction
formulation, we discuss experimental uncertainties and two of the
most robust models for comparison. Then, in Sec. IV we discuss the

proper dimension of molecules for thermodynamic properties (as
opposed to transport properties), and settle on the kinetic diameter as
an appropriate measure of size for our purposes. In Sec. V we use
scaling arguments to derive the proper functional form of the slip
correction factor for molecules, and by doing so we introduce the
concepts of molecular Reynolds number Re,,, and no-slip Reynolds
number Re; ,, for the background gas (j = dry air). A comparison
with experimental values for spherical molecules (noble gases) con-
firms our choice of functional form for the slip correction factor, and
allows for the determination of the (constant at standard temperature
and pressure, STP) no-slip Reynolds number Re; , for dry air. We
use the same constant value of Re; ,, obtained with data for noble
gases for the remainder of the comparisons with diatomic and tri-
atomic molecules. Section VI explores the compatibility of the slip
correction factor proposed in this work with the CE theory, and offers
some recommendation for the estimation of diffusion coefficients for
unstable trace gases. Concluding remarks are presented in Sec. VII.

III. Standard Models for Determination
of Diffusion Coefficients

Sydney Chapman and David Enskog formalized independently
the statistical mechanics approach to diffusion coefficients by con-
sidering molecular collisions as nonrigid phenomena that depend on
generic attractive and repulsive potentials. The CE theory solves the
Boltzmann equation for generic molecular potentials. Results from
the CE theory received general acceptance as soon as simple power-
law molecular potentials (such as the robust Lennard—Jones 6-12
potential) yielded consistent results for the estimation of viscosity
and thermal and binary diffusion coefficient values for a number of
simple gases. The entire theory, including several higher-order
approximations, is elegantly presented in the monograph by Chap-
man and Cowling [25]. While obtaining accurate experimental values
for the binary diffusion coefficients of gases continues to be a very
laborious task [3], the ability to relate results from kinematic viscosity
v and thermal conductivity k measurements to binary diffusion
coefficients D;; allows for the estimation of binary diffusion coef-
ficients for a wide range of gas combinations, even some that are
nearly impossible to reproduce experimentally. The result from the
CE theory that is most directly relevant to this work is the following
[10]:

3 M; +M;\1/2
Dij = — 27[KBT J TZD (8)
16 M;M; nno;;Qp
where n is the number density of molecules in mixture, o; 5 is a

characteristic length (diameter) for molecular collisions, Qp is a
dimensionless collision integral factor, and zp is correction factor
of order unity [10]. For molecules dissimilar in size (e.g., He and N,)
7p can be as large as 1.10, but for molecules similar in size it typically
ranges from 1.00 to 1.02 only. From the range of possible values for
Tp, it is clear that the CE theory without reference data from experi-
ments is only able to predict binary diffusion coefficients within
~10% average deviation, regardless of the molecular potential used.
Average deviations from experimental values of the order of ~5-10%
have been widely reported [10,26], with the lower deviations indicat-
ing fine-tuning of collision parameters, and the upper values indicat-
ing predictions of less well-characterized molecules.

The general success of the CE theory also meant that fewer
independent experiments was designed or carried out after the theory
became widely accepted. To this day, there are very few independent
measurements of gas diffusivities that are not based on some aspect of
the CE theory. The vast majority of the reported data for gas diffusion
is based on gas viscosity measurements [27] that have been translated
into binary diffusion coefficients for species i diffusing into species j
using the CE theory. Results with the 6-12 Lennard—Jones potential
are considered to be accurate to within 8—12% (on average) of the best
experimental data available for polar molecules, and generally within
5-8% (also on average) for nonpolar molecules [3]. Deviations from
experimental values by as much as 25% are possible, especially for
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mixtures containing smaller molecules in dilute quantities, or for
mixtures involving water vapor [10,26], but such deviations are not
common.

As mentioned above, because the CE theory is often used to
translate experimental values for binary diffusion coefficients D;;
obtained indirectly from viscosity or thermal conductivity experi-
ments, there are very few data sets that can be considered entirely
independent of the CE theory. Marrero and Mason [28] compiled an
extensive list of results that, together with the report by Svehla [27]
and the earlier compendium by Hirschfelder et al. [26], make up the
bulk of the binary diffusion coefficients available in the literature.
Other sources that also contain similar information and comparisons
include Refs. [10] and [3]. The most reliable data for 22 common
gases of interest, polar and nonpolar, compiled from these and a few
other more recent sources are summarized in Table 1. The usual
procedure is to perform viscosity experiments with a pure gas, and
determine, based on CE theory results, the values of the collision
length o; and maximum energy of attraction e; that offer the best
match with the experiments over arange of temperatures [16]. For the
repulsive-attractive Lennard—Jones 6-12 potential

o \12  [6\6
r r

the length scale o; is the value of r for which the potential ¢(r) = 0.

To convert viscosity measurements into binary coefficients, the
same values of o; and e; obtained from viscosity or thermal conduc-
tivity experiments are used, although this practice is not always

Table 1 Molecular and collision parameters for the
Chapman-Enskog theory fitted to experimental data using the
Lennard-Jones 6-12 potential

Gasi  Mass o, A ﬁ, K Kp T Q) Dy, m2/s  Scice
Kp el-]- ’
He 4.003* 2.576° 102* 9.54 0.7483 7.18x 107 0.218

Ne 20.180* 2.789* 357 5.10 0.8398 3.25x 10~ 0.481
Ar 39.948* 3.432% 1224* 275 09732 195x10~° 0.803
Kr 83.798* 3.675* 170.0° 234 1.0214 1.53x 107 1.021
Xe 131.293*  4.009* 234.7* 199 1.0770 1.27x10~> 1.236

H, 2.016* 2915* 38.0" 4.94 0.8449 7.81x107 0.200
OH 17.007° 3.147° 80> 341 09190 2.81x10° 0.558
Cco 28.010* 3.590° 110* 290 0.9588 2.06x 107 0.761
N, 28.013* 3.667*° 99.8° 3.05 0.9459 2.04x107 0.767
NO 30.006* 3.470% 1190 279 09692 2.07x 107 0.757
0, 31.999* 3.433% 113 2.87 09616 2.07x107 0.755
HC1 36.458° 3339 345  1.64 12672 157x107 0.998
Cl, 70.905* 4.115*  357*° 1.61 1.1652 1.22x107> 1.280
HBr 80908 —— —— —— —— 125x107 1.253¢
Br, 159.808" 4.268*  520° 1.34 1.2572 9.99x 10~ 1.568
I, 253.809° 4.982*  550* 130 1.2740 8.05x 10~ 1.946

H,0 18.015> 3.737° 32> 538 0.8314 2.58x 10~ 0.607
H,S 34.076° 3.623°  301° 176 1.2324 151x107 1.035
CO,  44.009* 3.996* 190 221 1.0405 1.53x 107 1.021
N,O  44.012* 3.879* 220° 205 1.0665 1.54x107° 1.015
NO,  46.005> 3.765° 210.0° 2.10 1.0580 1.59x 107> 0.985
SO, 64.065* 4.026° 363" 1.60 1.1680 127x 107 1.234

The values of Sc; in air shown in the last column are the most generally accepted values
based on fitted CE theory to experiments. Table entries are reproduced with original
significant figures from the following sources: “Bird et al. [31], "Mills and Coimbra [16],
“Brokaw and Svehla [32], and Tangetal. [6]. With the exception of molecular masses, all
last digits on Tables 1 and 2 should be considered speculative (nonsignificant) given the
experimental uncertainties and approximations involved. Note that the Sc; and D;;
values for HBr are not calculated using the CE theory but correspond to the midpoint
of the experimental uncertainty range reported by Tang et al. [6]. Slightly different
Lennard—-Jones parameters have been calculated more recently by Kim and Monroe [33].

justifiable. The collision integral €, for viscosity is the same for
thermal conductivity [29], but €, is a slightly larger value than
the collision integral Qp, for binary diffusion at a given temperature
[30]. Tables for , and Q, as functions of the dimensionless quan-
tity xgT/e;; are provided in standard references (see, e.g.,
Refs. [3,16,31]). Table 1 includes, when available, values for the
collision diameter o; in angstroms, e;/kp in kelvins, and the dimen-
sionless kT'/¢;; and Qp, for 22 gases in air [31]. For consistency, and
because there are substantial differences in the values of these quan-
tities published by different authors, we used the value of ¢; as
3.617 A and e ;/kg as 97.0 K for dry air from the updated values
provided by Ref. [31], which are themselves based on a modern
revision of earlier results published in Ref. [26]. The mixture colli-
sion parameters o;; and e;; are calculated in practice as

1
ij =5 (o; +0)) (10)

and
e,«j = e,«ej (11)

With Egs. (10) and (11), the binary diffusion coefficient for species i
diffusing in species j (dry air) is calculated by the CE theory using the
Lennard—Jones 6-12 potential with 7p = 1 and assuming ideal gas
behavior (n = 2.504 x 10 m™3) as

\/T3(M,- + M, /MM))
Di' =

2 12
j=A X m?/s (12)

where A is a constant equal to 1.84 X 10~'2 in SI units and 1.86 x
1077 for pressure P in atmospheres and o; ; in angstroms. As shown in
Table 1, the collision diameters for most simple gases range from
about 2.5 A to roughly 5 A, while the collision integral Qp is a
dimensionless quantity of O(1). Using the same Lennard—Jones
6-12 potential, the CE theory gives the following expression for the
dynamic viscosity:

kg/ms (13)

where Bis a constant equal to 2.67 x 1072 in ST units or 2.67 x 1076
for o; in angstroms. Again, assuming ideal gas behavior
(pj = PM;/RT), the kinematic viscosity v; is readily obtained from

Eq. (13) as
BR.[T3/M;
V= e /s (14)
an”P

and the Schmidt number given by the CE theory Sc; g is simply

vi  BRoIQp M,
Sciop = L =220 | M 15
GCET DT A 0, | M, + M, as

Comparing Sc; number values (as opposed to D;;) with experiments
is preferable for several reasons. Clearly, the explicit effects of
pressure and temperature in Eqs. (12) and (13) are eliminated in
Eq. (15). Both Qp and Q, are weak, mildly oscillatory decreasing
functions of temperature (see, e.g., Refs. [26,30]) that eventually
approach near-constant values of O(1) for high temperatures. Thus, a
Lennard-Jones molecule has a slightly smaller cross section at high
temperatures when compared to a rigid-sphere model molecule, and
the opposite behavior at low temperatures [26], and the combined
effect of the viscosity to binary diffusion coefficient ratios in Eq. (15)
yields a near-constant value of Sc; for most species diffusing in air at
tropospheric conditions. For these reasons, we select dry air at 300 K
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as the reference bath for this study, and we make comparisons based
on values of the Schmidt number Sc; for each species. Note that Sc; is
clearly a binary quantity just as D;;. We use the single subscript i in
Sc; instead of Sc;; to mean the Sc¢ number of species i in dry air for
simplicity, but also to conform with practice in the heat and mass
transfer literature.

In addition to the CE model, a robust method for the estimation of
binary diffusion coefficients is the method proposed by Fueller et al.
[9] (referred as Fin this work). The value of Sc is calculated as [9,10]

se . 2 TPUEO" + P [,
CiF = T7/4 M, + M, (

where the constant F is equal to 98.7 in SI units, and equal to 107 for
P in atmospheres and T in kelvins. Fueller’s model relies on exper-
imental determination of the diffusion volume v; and v; for simple
atoms and molecules. Those values are tabulated, and do not always
agree with the original values provided in [9]. In this work we adopt
the values presented in [10], which are the most widely cited and are
also in agreement with the original values given by [9]. Note that
Table 11-1 of [10] also provides values for diffusion-volume incre-
ments for C, H, O, N, CI, and S and (negative increments) for
aromatic and heterocyclic rings that can be used to estimate the
volumes of molecules that are not included in the main table.
Although much simpler to use than the CE theory, Fueller’s model
also requires the use of tabulated values that are optimized using
diffusion data for well-characterized molecules. A perhaps less sat-
isfying feature of the model is that the incremental volumes for atoms
do not add up to the total volumes of the molecules, which makes
more difficult to combine species reliably based on a limited set

volumes for atoms and simple molecules. Nonetheless, the simplicity
and robustness of Fueller’s method makes it a popular choice for the
estimation of diffusion coefficients and Sc numbers. Another impor-
tant feature of this method is that it makes explicit the fact that
diffusion coefficient is, at least to a first approximation, only a
function of the molecular mass of the individual species and a
combination of molecular length scales (in this case, the cubic roots
of the different molecular volumes).

IV. On the Characteristic Size of Molecules

The concept of kinetic diameter as the relevant length scale for the
determination of thermodynamic properties of gases was first sug-
gested by [26]. The concept was made popular by Breck’s extensive
use of it in his monograph on zeolite molecular sieves [34]. The
kinetic diameter d;, of a molecule is defined exactly as o; but the
value of the length scale for zero potential is calculated by compari-
son with experimental second virial coefficients for gases at different
temperatures [26,35]. The values of d; using second virial coeffi-
cients may differ slightly from the values of ¢;, which are determined
by comparison with either viscosity or thermal conductivity data. For
this reason, Hirschfelder et al. [26] recommend the use of the kinetic
diameter dy, for the determination of thermodynamic properties,
whereas o; should be used for transport properties. More recently,
Kim and Monroe [33] showed that higher accuracy calculations of the
collision integrals for the Lennard—Jones potentials yield very close
values between o; and d,, for spherical (noble gas) molecules.

Mehio et al. [35] developed detailed ab initio quantum mechanics
calculations that add strong credibility to the concept of kinetic
diameters as a physical representation of the effective size of
molecules. In this work we adopt commonly found values for kinetic

Table 2  Kinetic diameters d,, molecular Reynolds numbers u;dy, /v ;, shape factors x; and
computed Sc; using the Chapman-Enskog theory, the proposed model C given by Eq. (24), and
Fueller’s model F given by Eq. (16) for the 22 molecules listed in Table 1

Gasi d,, A9 i;,m/s Re, X10°

Sc; range Scice Scic 6¢c,%  Scip Op, %

He 2.60 1259.67 10.5 1.00
Ne 2.75 561.03 4.93 1.00

021" —0.23" 0218 0223 42 0233 +7
047" —0.49" 0481 0501 +4 0504 45

Ar 3.40 398.32 4.33 1.00  0.80"-0.81" 0803 0.705 -12 0816 +2
Kr 3.60 275.32 3.16 1.00 098" —1.10" 1.021 1.021 0 1.036  +2
Xe 3.96 219.95 2.78 1.00 1.21"—1.37% 1236 1278 +3 1303 +5
H, 2.89 1775.02 16.4 123 020"-021" 0200 0.195 -3 0214 +7
OH —_— 611.13 —_—— 1.23  0.56' —0.80°F 0558 0.566 +1 0518 -7
CcO 3.76 476.20 5.72 .23 0.76* -0.76" 0.761 0.726 -5 0792 +4
N, 3.64 476.18 5.53 1.23 075" -0.78" 0767 0726 -5 0778 +1
NO 3.17 460.09 4.66 123 0.60—0.76" 0.757 0.751 -1 0.682 -10
0, 3.46 445.53 4.92 1.23 076" -0.79" 0.755 0.776 +3 0.784 +4

HCl 320 41740 426 1.23
cl 320 29930  3.06 123
HBr 350  280.19  3.13 1.23
Br, 350 19937 223 1.23
I, —— 15820 —— 123

091" —1.05¢ 0998 0828 -17 0.880 -12
1.12f =139 1280 1.155 -10 1211 -5
0.94f — 176" 1.253¢ 1234 -2 1207 -4
1.44F —1.73F 1568 1.734 411 1.650 45
1.76f =2.91F 1946 2185 412 1.621 -17

H,0 2.65 593.79 5.02 1.39
H,S 3.60 431.74 4.96 1.39
CO, 3.30 379.91 4.00 1.39
N,O 3.30 379.89 4.00 1.39
NO, —_— 371.57 —_ 1.39
SO, 3.60 314.87 3.62 1.39

0.508 - 0.65¢  0.607 0.658 +8 0.616 +1
1.04° —1.041  1.035 0905 -13 0.859 -17
1.00" —1.18" 1.021 1.028 +1 0989 -3
1.02" —1.19"  1.015 1.028 +1 1.096 +8
0.81F —1.69" 0985 1051 +7 0935 -5
1.09" — 144" 1234 1.240 0 1.231 0

Comparing the C and F models against the most widely accepted values obtained by the CE theory, we find that the mean bias
deviation is of the same magnitude but slightly smaller for the simple C model [Eq. (24)] at —0.56% versus 1.23% for the F
model [Eq. (16)]. The values of 6. and d are the relative deviations with respect to Sc¢; cg. The cumulative relative standard
deviation is exactly the same (7.5%) for both C and F models, a value that is compatible with the experimental uncertainty
reported by [8] for both the twin tube (TT) and the arrested flow (AF) experimental methods. The ranges of reported values for
Sc; in the sixth column are from the following references: “Ref. [31], Ref. [16], ‘Ref. [32], “see footnote of Table 1, Ref. [26],

Ref. [6], ®Ref. [37], "Ref. [27], ‘Ref. [3], and 'Ref. [34].



Downloaded by CALIFORNIA INST OF TECHNOLOGY on October 28, 2022 | http://arc.aiaa.org | DOI: 10.2514/1.J061338

COIMBRA, COIMBRA, AND COIMBRA 4749

diameters of monoatomic, diatomic, and triatomic molecules in the
literature [26,34]. We will show later that the specific choice of
kinetic diameter is (at most) of secondary importance in the deter-
mination of binary diffusion coefficients and Schmidt numbers. We
use kinetic diameters for the determination of the slip correction
factor in the next section because the molecular Reynolds number
Re,, is determined by a thermodynamic property («;) of the diffusing
gas for a given thermodynamic state of the background gas. Table 2
lists the kinetic diameters d;, for 19 of the 22 species considered in
this work. These are commonly accepted values from standard
references [26,34]. Kinetic diameters for OH, I,, and NO, are not
reported here because there are discrepancies in the values found in
the literature for these molecules. As we shall see, the absence of a
few values does not interfere with the analysis and conclusions.

V. Slip Correction Factor for Gas Molecules

To derive a proper functional form of the slip function for small gas
molecules, we invoke the concept of correlation path length devel-
oped by Taylor [36] for particles and vortices, and applied here to
molecules. The correlation path length concept is well known in the
aerosol and turbulence research communities [15]:

lop = \/;Am R(x) dr 17

where R(7) is the Lagrangian velocity autocorrelation coefficient for
the diffusing particle, and 7 is the dimensionless time associated with
the motion of the particle. The correlation path length £, is thus the
distance for which the motion of the molecule is well-correlated with
its status at 7 = 0. The diffusion coefficient for a molecule under-
going generic diffusion by continuous movements first proposed by
Taylor [36] is given by (see, e.g., [15])

Dij = 'Zifcp (18)

Equating Eq. (18) with Egs. (1) and (2), the correlation path is
given by

_ KBT _ KBTC(H)

l., = =—
P fup 3apdyyii;

19)

Consistent with the discussion above, we seek a functional form for
C(IT) that renders the correlation path [, independent of both the
diffusion molecule mean velocity and its diameter. In this way, the
binary diffusion coefficient in Eq. (18) is composed of two indepen-
dent parts: one that depends solely on the diffusing gas velocity (i;)
and another (/) that depends on the friction of the background gas j
(dry air) and, at most, on the shape (not size) of the diffusing
molecule. This is accomplished through straightforward dimensional
analysis by setting C(Re,,) = Re,, /Re; , where

Re,,
Em; 2v

(20)
J

and Re; ,, is a reference Reynolds number that depends only on the
thermodynamic state of the background gas, and therefore is a
constant for given values of temperature and pressure. The molecular
correlation path is thus

KBT (21)

Copg = —
P 6”/‘j”j)(iRej.ns

Note that while the slip correction factor C(Re,,,,) depends linearly
on the kinetic diameter dy, of the diffusing molecule, the molecular
friction factor

_ 3apvixiRe;ng
¥

fe (22)

is not explicitly dependent on the size (dy,) of the diffusing molecule
i, but rather depends on its shape factor y; and its mean velocity u; =
V8RT /zM; (which is uniquely determined by the molecular mass
M; and the temperature of the bath T').

The f¢ dependency on dy, in Eq. (22) is substantially different
from the quadratic form derived by Epstein [23] and shown in Eq. (6),
but it is consistent with the concept of correlation path length for

14 r
I Max range
121 o CE theory
Xe
—— Sc=0.6¢?
g
E
z
3
i
<
O
R
0 1 1 1 1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

€ = AL/]\/[Z

Fig. 1 Schmidt numbers for noble gases i diffusing in dry air j as a function of € = M;/M,. Circles correspond to the values calculated using the
Chapman-Enkog (CE) theory with the 6-12 Lennard-Jones potential, whereas vertical bars correspond to the maximum range of values reported in

standard references (see Sc¢; uncertainty ranges in Table 2).
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small aerosols. For aerosol particles in air at STP, 7, reaches a
minimum of about 7 nm for d, 1i, ~ 200 nm and grows with d },/ 2
ford, > d, i and with d,,'/ for d, < d,, yin (see, e.g., Fig. 2.4 of
[15]). Equation (21) indicates that, at the molecular level, fcp 13 d‘,fl,

as the dynamic shape factor y; and the molecular velocity u; replace
molecular size in the determination of the molecular friction factor.

Once the functional form of the friction factor f is known, the
Schmidt number (v;/D;;) for gas molecules diffusing in dry air can be
readily calculated as

v; 3Ny (7 \3/2[H3RE n
Sei = —J AV [T DI M. 23
Cic ﬁifcp ﬁ (R) |: T3/2 Xi i ( )

Note that the terms in brackets in Eq. (23) depend only on the
properties of the background air and, according to the above interpre-
tation, must be a constant for a given thermodynamic state of the bath.
The remarkable feature of Eq. (23) is that it provides a simple way to
estimate Sc numbers (and thus binary diffusion coefficients) for any
simple molecule based only on the molecular mass and the number of
atoms in the molecule, provided that the constant value of Re;  is
known for the background gas. It also implies that the Sc¢ numbers of
spherical molecules should vary with the square root of the molecular
mass. This is confirmed by examining Fig. 1, where the Sc¢ numbers for
five spherical molecules (noble gases) are very well fit by the simple
expression Sc; = 0.11/M; = 0.60/e, where ¢ is the ratio M;/M;
used here to render the correlation dimensionless.

With Sc;/e'/? = 0.11 for the noble gas molecules, the value of
Re; ; for dry air at 300 K and 1 atm is determined from Eq. (23) to be
equal to 1.36 x 1072, and the slip correction factor is thus simply
C(Re,,,) = 7.35% 104R€m,- We will use this same constant of pro-
portionality for the remainder of the analysis below.

V1. Results and Discussion

Figure 2 shows that the value of Re; ,; found by fitting the data to
noble gases indeed applies to diatomic (y, = 1.23) and triatomic
(r3 = 1.39) molecules as well, so that all molecules are very well
correlated by

I Max range

—— Se¢/x = 0.6€'/2

Sc/x

SC,‘.C :0'11)(1'\/Mi :060}(,\/5 (24)

which is a remarkably simple expression that can be used to accu-
rately estimate Sc numbers for simple molecules diffusing in air
at STP.

The physical interpretation for the no-slip background gas
Reynolds number is as follows: Re; ,; expresses the limiting value
of Re,, for which a slip correction is equal to unity. In other words,
the farther away the value of Re,, for a given molecule is from the
constant (much smaller) value of Re; ¢, the higher the slip experi-
enced by the molecule. A hypothetical very dense and slow mol-
ecule would experience Stokes drag friction with C(Re,,,) = 1, but
since such massive molecule does not exist, there is always a need
for slip correction for air at STP. Because the main contributor to the
value of Re,, for each molecule is the mean molecular speed u;,
which is inversely proportional to the square root of its molecular
mass M;, the faster moving, lighter molecules are characterized by
higher values of Re,,, and therefore these molecules experience
more slip. This is consistent with the idea of increasing slip for
larger values of particle Knudsen numbers from the aerosol theory.
Note that the molecular Reynolds number proposed here does not
have the same meaning of the usual particle Reynolds number. The
former is higher for lighter molecules, which move at higher speeds.
The latter is smaller for smaller particles because both the size of the
particle and the relative velocity between the particle and the flow
are smaller for smaller particles. An important difference between
the present approach is that it yields a friction factor f. that is
independent of the size of the molecules, but rather depends on their
molecular mass and mean speed. As discussed in the next subsec-
tion, this interpretation is entirely compatible with the CE model
estimate [Eq. (15)], while dispensing with the need for tabular
values.

A. Compatibility with the Chapman-Enskog Theory

Equating Sc; = v;f/xgT with Eq. (13), it is possible to derive a
functional form for the friction factor f directly from the CE theory
using the 6-12 Lennard—Jones potential:

L

10°

10° 10!

€= Z\/L/]\/[Z

Fig.2 Ratio of Schmidt number Sc¢; and shape factor y; as a function of the molecular mass ratio e for all molecules in this study. Note that e varies by
more than two orders of magnitude. The values of y; are as follows: 1 for monoatomic, 1.23 for diatomic, and 1.39 for triatomic molecules. The range of

values (in red) is from the reported spread of data and models listed in Table 2.
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K'BQDO'ZZJ-P SR
A, \z(l+e

fee = (25)

Comparing Eq. (25) with Eq. (22) allows us to determine that Re;
must be equal to

2
Re,, = 2200 | 8R (26)
M BrAp gy | 7(1 +€)

for both formulations to be equivalent. Furthermore, according to our
assumptions, the value of Re; , must be constant for given conditions
of temperature and pressure, which implies that the ratio

Qno?.
DOjj (27)

v xivl+e
must be a constant for all species. Indeed, for o;; in angstroms, r;; ~
7.1 (with 8% relative standard deviation) for all the gases in Tables 1
and 2 (again excluding HBr due to the lack of reliable o; and e;
values). Similarly, the quantity

r

Qpo}; [ Py, ] __ o [Bﬁ] = S on
yiNT+ e LAT? Q07 M+ M; LriAl  xivM;

is also found to be nearly constant with ~8% relative standard
deviation for all species. Thus, the aerosol-derived theory for the slip
correction factor and the simple correlation [Eq. (24)] for Sc; are fully
compatible with the CE theory within the range of uncertainties
involved. Note that the value of the no-slip Reynolds number for
air at different temperatures and pressures (assuming that the ideal
gas behavior holds, and temperatures are well above the critical
temperatures for all species involved) can be found from Eq. (23) as

Another way to verify the compatibility of the proposed approach
with the CE theory is to plot the proposed slip factor correction
C(Re,,) = Re,, [Rej, = 7.35% 104Rem’ versus the value of the
slip correction factor C(IT) that returns the CE theory values for Sc;
presented in the last column of Table 1. Figure 3 shows that the
proposed slip factor correction is very well correlated for species
spanning two orders of magnitude in molecular mass ratio. The
agreement in Fig. 3 provides strong support for the slip correction
approach and the assumptions made in the previous sections.

Although the agreement with the CE theory is strong, noticeable
deviations are observed for some molecules containing hydrogen
(H,0, HCI, H,S) and for poorly characterized molecules such as Br,
and I,. The F method underestimates the value of Sc; for I,, whereas
the C method barely misses the reported range for Br, given by [6].
Such deviations are expected given the simplicity of both approaches.
In general, larger deviations from the spherically symmetric Len-
nard—Jones potential are expected for nonpolar molecules due to the
larger values of the approximate angle-independent potential for
polar molecules §* = ¢?/e;0?}, where { is the reduced dipole moment
for the polar molecule [26]. The small deviation for SO, (which has a
higher value of 5* compared with H, S and HCI) seems to indicate that
it is the length of the hydrogen single bond that is somewhat under
predicted by the fixed value of y; = 1.39. Both mechanisms seem to
contribute to the uncertainty for the molecule with the highest value
of 6* in the table (H,0). Clearly, instead of using a constant shape
factor for all diatomic and another for all triatomic species, one is free
to make small adjustments to the aspect ratio y; so to take into
consideration the length of the bonds, the bent angle, and the size
ratio of individual atoms in each molecule. However, the objective of
this work is to show that a set of very simple universal rules taken
directly from the extensive literature of aerosol theory is able to
estimate Sc; values at least as well as much more complex models,
and within the experimental uncertainty of modern techniques.

B. Practical Estimates
Another point worth mentioning is that the smaller, stable mole-

T5/2 cules that are best characterized experimentally (the ones with small
Rejq ~ 3.39x 1072 — (28) ranges of Sc; in Table 2) were used to adjust the semi-empirical
Puj parameters in both the CE theory and the F model. For this reason, the
1400 -
o CE theory
Re, 4 H
o C(Rep,) = pem =735 x 10" Rep,
1000 [~
—~ 800[
QE
)
600 -
400 -
200 -
1 1 1 1 1 1 1 1
0 2 4 6 10 12 14 16
Ren, %107

Fig.3 Theslip correction factor C(II) as a function of the molecular Reynolds number Re,, . The discrete circle values correspond to the values of C(II) in
Egs. (1) and (2) that return the exact values given by the CE theory in Table 1. The high coefficient of determination (R? > 0.99) in this figure corroborates

the choice of the functional form for C(I) = Re,,,/Re; ;.
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CE model is likely to be much closer to experiments for those well-
characterized molecules. For unstable trace gases, it is likely that the
CE model underpredicts the value of the binary diffusion coefficient
by as much as 10% given that the value of 7 in Eq. (12) was taken as
unity. Since the binary diffusion coefficient is underpredicted, the
values of Sc; for poorly studied molecules are likely to be over-
predicted by ~10%.

Massman [12] argued that the incorrect use of Graham’s law led
some researchers to estimate the binary diffusion coefficient of ozone
in air from the (still poorly characterized) binary coefficient of water
vapor in air using the inverse square root of the respective molecular
masses. We showed here that this approximation is not only compat-
ible with the CE theory, but is actually enforced by it, as long as the
molecules have the same number of atoms. Both H,O and O; are bent
molecules, but while H, O has two single hydrogen bonds, O; has one
double and one single bond. Potential minor adjustments to account
for the different bonds make the ratio not quite exact, but the strong
agreement found in this work with no adjustments to the values of y;
indicates that using the square root ratio is a very good approximation
and within experimental uncertainty. The recent measurements by [8]
place the value of Scq, in air at 300 K and 1 atm at 0.868, with the
highest experimental value at 0.935 and the lowest at 0.810. This is
substantially lower than the CE theory estimate of 1.016 reported by
Massman [12]. Massman [12] estimated Sco, as 0.951, about 7%
lower than his own CE theory estimate. Equation (24) with coeffi-
cient 0.11 yields a value of 1.059, which is compatible with the CE
theory value given by [12]. According to the above discussion, if the
coefficient in Eq. (24) is reduced to 0.10 given that ozone is not a
molecule that has entered the experimentally adjusted database, the
model proposed here yields Sco, = 0.963, which is still 3% higher
than the range of measured values given by [8]. Interestingly, esti-
mating Sco, from the value of another bent molecule (SO,, which

is better characterized than H,0) as /Mo, /Mso, X Scgo, yields
Sco, = 0.929, a value that is compatible with the experiments of
[8] and the earlier estimate by [12].

VII. Conclusions

This work advances our understanding of gaseous diffusion air in
many different ways. First, it summarizes both classical and recent
experimental results for polar and nonpolar molecules and for stable
and unstable trace gases that are important for a large number of
atmospheric processes on Earth.

Second, it shows that the rigorous results obtained for small
aerosols diffusing in the free molecule flow regime can be extended
to molecular scales as long as the proper friction coefficients are used.
The choice of the functional form for the slip correction coefficient
used in this work is not only compatible, but also strongly supported
by the CE theory, which approaches the molecular diffusion problem
from Boltzmann statistics. The extension of the Stokes—Einstein—
Taylor theory to molecular levels with substantial slip contributed in
this work is entirely novel. Comparison with experimental results at
STP conditions shows that molecules in this regime behave sta-
tistically as small aerosols, which is likely to result in new physical
insights given the extensive results for aerosol diffusion in different
flow configurations.

Third, the arguments used to derive Eq. (23) result in a very simple
correlation, Eq. (24), which reproduces Schmidt numbers and binary
diffusion coefficients within the general uncertainty of much more
complex models, and also within the experimental uncertainty of
modern experimental techniques. The proposed correlation relies on
a simple rule that links the aspect ratio of molecules to the number of
atoms in the molecule, dispensing with the need for molecular
volumes or collision length scales. Diffusion coefficients for simple
molecules (with molecular mass M;) in dry atmospheric air (with
molecular mass M ;) can be readily evaluated at the reference temper-
ature of 300 K as

D300 K) =—F 29)

O.6)(,',/Mi/Mj

where v; is the viscosity of air at 300 K, and y; is 1.00 for mono-
atomic, 1.23 for diatomic, and 1.39 for triatomic molecules. As
shown in Table 2, use of Eq. (29) yields results at least as good as
the semi-empirical model by Fueller et al. [9], which is used broadly
in the literature but requires tabulated values for the volume of
different atoms and molecules.

Once the diffusion coefficient is estimated at 300 K, it can be
translated to other bath temperatures by using the well-known con-
version relations derived from Eq. (12), or simpler (but more accu-
rate) semi-empirical relations such as

D;;(T) = D;;(300 K)(T/300 K)? (30)

Many authors in both the atmospheric physics and the aerospace
engineering communities use different values of b for air (typically
between 1.50 and 1.85) depending on the temperature range under
study and the reference temperature used. For most applications in
air, the b exponent can be taken as 1.75 (see, e.g., [6]) as per Fueller’s
semi-empirical method [Eq. (16)], or adjusted to experimental values
when those are available. For example, Langerberg et al. [8] recom-
mends a b value of 1.83 for ozone diffusing in air for a reference
temperature of 273 K. Similarly, a b exponent of 1.685 is recom-
mended by Marrero and Mason [28] for H,O in air for a reference
temperature of 256 K. The CE theory predicts a value of b ~ 1.5 + 6
[see Eq. (12)] with positive J deviations arising from the Qp, term as
this value changes with temperature more strongly at low temper-
atures (Qp ~ lq_;;T/e,TjO'44 for k3T /e;; < 4) and becomes almost con-
stant at high temperatures (Qp ~ k5T /e;>!" for k3T /e;; > 4). This
behavior implies a value of b given by the CE theory ranging from
1.67 to 1.94. Just as with the CE theory, the slip-correction theory
proposed here predicts that the Sc¢c number must be nearly indepen-
dent of temperature, which means that the temperature dependence of
the binary diffusion coefficient must follow the behavior of the
kinematic viscosity. Equation (28) shows that the nonslip back-
ground flow Reynolds number varies inversely with pressure and
with the 5/2 power on temperature, as well as with the inverse cubic
power of the kinematic viscosity of the bath gas. Equation (28)
combined with Egs. (1) and (22) yield a friction factor f that varies
with T /v;, and a binary diffusion coefficients in air varying directly
with v;, as expected. The kinematic viscosity of air for temperatures
between 250 and 400 K can be well approximated by the simple
power-law behavior v, ~ 9.6 x 10719717 m? /s, which implies a
value of b ~ 1.7. If the temperature is not too far removed from
300 K, all these slightly different values of b yield binary diffusion
coefficients that are acceptable for most practical applications.
Finally, Eq. (28) and the procedure outlined in Sec. V can be used
to estimate the no-slip molecular Reynolds numbers for other back-
ground gases such as Ne, Ar, N,, O,, and CO, with similar accuracy
as reported in this work (see additional tables in the supplemental
materials S1; or go to the Supplemental Materials link that accom-
panies the electronic version of this paper at http://arc.aiaa.org).
The fact that the number of atoms in a molecule is shown in this
work to be a good proxy for the molecular aspect ratio can be
explained by the following argument: due to the strong attraction
of heavy nuclei, the electron clouds of most atoms are of comparable
size, with the exception of the smallest atoms of hydrogen and
helium. However, helium is inert, and the longer, single bonds of
hydrogen tend to offset its smaller size. This argument is straightfor-
ward for diatomic and colinear triatomic molecules (e.g., carbon
dioxide). For bent triatomic molecules the argument is less obvious,
but the good agreement found using a constant value of y3 for four
triatomic molecules that do not contain hydrogen bonds gives support
to the overall approach (see the excellent agreement shown in Fig. 3).
Finally, it is entirely possible that very simple rules distinguishing
covalent and ionic bonds or colinear and bent molecules could be
developed to improve the agreement between the proposed correla-
tion, Eq. (24), and experimental values. However, the simplicity of
the model proposed here and its ability to reproduce molecular
behavior based on molecular masses and shape factors only are
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intellectually satisfying and of great practical relevance in both
science and in engineering applications.
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