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We examine the functional form of the slip correction factor C�Π�, where Π is a dimensionless group to be

determined, for simple (monoatomic, diatomic, and triatomic) gasmolecules diffusing in air at normal conditions.We

express C�Π� in terms of the molecular Reynolds number, Remi
� �uidki∕2νj, where �ui and dki are the Maxwell–

Boltzmann mean molecular speed and the kinetic diameter of the diffusing gas molecules, and νj is the kinematic

viscosity of the background gas (dry air).We show that the slip correction is given simply byC�Remi
� � Remi

∕Rej;ns,
where Rej;ns is a reference no-slip Reynolds number that depends only on the thermodynamic state and viscosity of

the background gas j. For dry air at 300 K and 1 atm,Rej;ns � 1.36 × 10−5, so that C�Remi
� � 7.35 × 104Remi

. The

approachpresentedhere canbe easily generalized to other gasmedia and leads to a remarkably simple correlation for

estimation of Schmidt numbers and binary diffusion coefficients for both stable and unstable trace gases in air.While

this correlationdepends only on themolecularweightMi and the number of atoms in themolecule of the diffusing gas,

it performs competitively against more complex models.

Nomenclature

A = model constant in Eq. (12)
ap = particle radius
B = model constant in Eq. (13)
C�Π� = slip correction factor as a function of dimensionless

group Π
Dij = binary diffusion coefficient for species i diffusing in

species j
dki = kinetic diameter of species i
eij = maximum energy of attraction in Lennard–Jones

potential [Eq. (11)]
f = friction coefficient in Stokes–Einstein theory [Eq. (2)]
Knp = particle Knudsen number [Eq. (3)]
l = mean free path
m = mass of a single molecule
NAv = Avogadro’s number, 6.023 × 1026 molecules∕kmol
P = pressure
R = universal gas constant, 8314.5 J∕�kmol ⋅ K�
R�τ� = Lagrangian velocity autocorrelation coefficient

[Eq. (21)]
Rej;ns = reference no-slip Reynolds number for background gas

species j
Remi

= molecular Reynolds number for species i
Sc = Schmidt number
T = temperature
�ui = mean molecular speed
v = volume of atom or molecule in Fueller et al.’s model
α = collision restitution or momentum accommodation

coefficient
ϵ = ratio of molecular masses, Mi∕Mj

κB = Boltzmann’s constant, 1.38 × 10−23 J∕K

μ = dynamic viscosity
ν = kinematic viscosity
ρ = specific mass
σ = collision length (or diameter)
χi = shape factor for monoatomic, diatomic, and triatomic

molecules
χ1 = shape factor for monoatomic molecules, 1.00
χ2 = shape factor for diatomic molecules, 1.23
χ3 = shape factor for triatomic molecules, 1.39
χp = shape factor for nonspherical particles
Ωμ = collision integral for viscosity and thermal conductivity
ΩD = collision integral for binary diffusion

Subscripts

C = proposed model
CE = Chapman–Enskog model
cp = correlation path [Eq. (21)]
Ep = Epstein model
F = Fuller model
i = species i
j = species j (dry air)
p = particle

I. Introduction

T HE diffusion of simple monoatomic, diatomic, and triatomic
gases in air plays a key role in many biological and physical

processes. On the physical side, a number of meteorological, clima-
tological, and aeronautical processes require precise knowledge of
binary diffusion coefficients for gas molecules in air [1,2]. For
example, industrial processes involving degassing of plastics during
thermal processing need to account for multiple gas species for
process control and environmental health monitoring [3]. In biologi-
cal systems, the transport of gas molecules and aerosols trough
alveoli and stomata is often controlled by diffusion at air–membrane
interfaces [4,5]. Heterogeneous (gas–surface) diffusion to suspended
aerosols in the atmosphere is, in some cases, limited by the diffusion
of inorganic compounds into the surrounding air. Many critical
aspects of atmospheric chemistry are directly affected by these air–
surface reactions at the lower atmosphere [6]. Above the homopause,
lighter gases segregate gravitationally by diffusion, and the binary

Received 2October 2021; revision received 22 February 2022; accepted for
publication 24 February 2022; published online OpenAccess 28March 2022.
Copyright © 2022 by CFM Coimbra. Published by the American Institute of
Aeronautics and Astronautics, Inc., with permission. All requests for copying
and permission to reprint should be submitted to CCC atwww.copyright.com;
employ the eISSN 1533-385X to initiate your request. See also AIAA Rights
and Permissions www.aiaa.org/randp.

*Research Assistant. Student Member AIAA.
†Graduate Research Assistant, Graduate Aerospace Laboratories.
‡Professor, Mechanical and Aerospace Engineering.

4744

AIAA JOURNAL
Vol. 60, No. 8, August 2022

D
ow

nl
oa

de
d 

by
 C

A
L

IF
O

R
N

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

O
ct

ob
er

 2
8,

 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

06
13

38
 

https://orcid.org/0000-0002-9428-3931
https://doi.org/10.2514/1.J061338
www.copyright.com
www.copyright.com
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.J061338&domain=pdf&date_stamp=2022-04-04


diffusion coefficients for these unstable trace gases are difficult to
measure by conventional methods [7,8].
The general absence of independent experimental data for gas

diffusion coefficients in air is often circumvented by classical models
given the importance of the above-mentioned process. Well-estab-
lished models and experimental techniques exist only for a few well-
characterized, stable molecules. Tang et al. [6] compiled a list of
experimental binary diffusion coefficients for inorganic reactive trace
gases of relevance to atmospheric process and compared the exper-
imental values with Fueller’s semi-empirical method [9]. The
reported agreement was �30%. Tang et al. [6] conclude that “[t]
herefore, in cases where the diffusion of a trace gas has not been
measured, Fueller’s method can be used to estimate the diffusion
coefficient.” Earlier, Reid et al. [10] compared results of the Chap-
man–Enskog (CE) theory with those of Fueller’s (F) method against
experimental measurements for a wide variety of binary systems and
found the agreement between the CE theory and Fueller’s method
with experiments to be roughly equivalent, with a slight advantage to
Fueller’s method (7.5% vs 6.9% absolute average errors, respec-
tively). The discrepancy between �30% and �7% found in these
two studies is explained by the circular contamination of information
between experiments and semi-empirical models: model parameters
are adjusted to fit experimental results, so the better characterized a
binary gas system is, the more likely it is to have had its model
parameters adjusted to it. Because of this circular inference, model
errors for frequently studied stable gases are likely to be substantially
smaller than the model errors for less frequently studied gases.
Paradoxically, the binary diffusion coefficients for gases that are

critically important to the dynamics of the Earth’s atmosphere are still
poorly characterized. For example, the diffusion of water vapor in air
is not well characterized partially due to the highly polar nature of the
water molecule, but perhaps also due to the tendency of water
molecules to form molecular clusters [11]. Similarly, the diffusion
coefficient of ozone (O3) in air has never been measured directly [12]
until the very recent work by Langerberg and colleagues [8], who
used two complementary experimental techniques (arrested flow and
twin tube) to study diffusion coefficients of unstable trace gases of
atmospheric relevance. Langerberg et al. [8] report systematic errors
of the order of 7% for both experimental methods, which the authors
consider larger than the 5% systematic error for stable, nonpolar
molecules obtained by the CE theory with experimentally adjusted
coefficients for the Lennard–Jones potential. They also found that the
Fuller’s method overestimates the diffusion coefficients of inorganic
compounds with a systematic error smaller than 35%, and under-
estimates the diffusion coefficients of organic compounds with a
systematic error of less than 15%. Taking into consideration the
relevance of the transfer processes related to water vapor and trace
gases in the atmosphere, an analysis that yields a simple estimation
for binary diffusion coefficients in air seems in order.
The objectives of this work are as follows: 1) to extend the Stokes–

Einstein theory results for aerosols diffusing in air to the molecular
scale and, in doing so, to estimate the functional form of the slip
correction factor for ideal gas molecules of different shapes and
chemical compositions; 2) to compare the results obtained with the
newly derived slip correction factor with two of the most reliable
semi-empirical models, namely, CE (CE theory with Lennard–Jones
6-12 potential) and F (Fueller’s semi-empirical model); 3) to propose
a simple physics-based correlation for estimation of Schmidt (Sci)
numbers and binary diffusion coefficients of polar and nonpolar,
stable and unstable trace gases diffusing in dry air with similar
uncertainties as those associated with both experiments and the most
reliable semi-empirical methods; and 4) to show that the extensive
results obtained for aerosol transport in air are compatible with the
transport of even the smallest molecules if appropriate slip factor
corrections are used.

II. Background

The theory of aerosol diffusion is well-developed and provides
accurate results for suspended particles as small as 2 nm (20 Å) in
effective diameter [13,14]. The Brownian diffusion of a spherical

aerosol particle is expressed in terms of the Stokes–Einstein relation
as [13,15]

Dp � κBT

f
(1)

where κB is the Boltzmann constant (1.38 × 10−23 J∕K), T is the
absolute temperature of the background gas (bath) in kelvins, and f is
the friction coefficient given by [15,16]

f � 6πμapχp
C�Π� � 3πμdpχp

C�Π� (2)

where ap and dp are the radius and the diameter of the particles, μ is
the dynamic viscosity of the suspending gas (in our case dry air), χp is
a shape factor for nonspherical aerosols, and C�Π� is the slip correc-
tion factor that accounts for deviations from the continuum regime.
As shown in Eq. (2), it is customary to express the slip correction
factor C�Π� as the ratio between the aerodynamic drag coefficient at
the zero Knudsen numberKnp (continuum) limit, F0, and the actual
aerodynamic resistance exerted on the particle, FD [17]. Note also
that the friction coefficient f in Eq. (2) implies an infinitesimal value
for the particle Reynolds number (based on the radius of the particle,
ap, the fluid-to-particle relative velocity,W, and the viscosity of the
background gas, ν, such that Rep � Wap∕νj → 0). Corrections for
higher particle Reynolds and Mach numbers are provided in the
recent review by Loth and collaborators [18].
Here we define the Knudsen number as

Knp � lj

dp
(3)

where l is the mean free path of the background gas molecules, and
dp is the effective diameter of the diffusing particle (aerosol). The
mean free path for air molecules (lj) is

lj �
2νj
�uj

� νj

�
πMj

2RT

�
1∕2

(4)

where νj is the kinematic viscosity of dry air, �uj is themeanmolecular
speed of air molecules given by �uj �

�������������������
8R∕πMj

p
,R is the universal

gas constant (8314.5 J∕�kmol ⋅ K�), and Mj is the mean molecular
weight of air molecules (28.96 kg∕kmol). Henceforthwe assume dry
air to behave ideally and to be composed of 78%N2, 21%O2, and 1%
Ar by volume. The kinematic and dynamic viscosities of dry air at
300 K and 101,325 Pa (1 atm) are assumed to be equal to 1.57 ×
10−5 m2∕s and 1.84 × 10−5 kg ⋅m−1 ⋅ s−1, respectively.
There is no purely mathematical theory for calculating the func-

tional form of the slip correction factor C�Π� from the continuum
(Knp → 0) to the free molecule flow regimes (Knp → ∞), but very
accurate interpolation functions have been developed over the years
with the help of detailed experiments (see, e.g., [19–22]). These
correlations are based on the functional form originally proposed
by Cunningham [19]:

C�Knp� � 1� Knp�C1 � C2e
−C3∕Knp� (5)

where often-quoted values of Cn are 2.514, 0.800, and 0.550 for
particles diffusing in air [16,20]. Based onEq. (5), Dahneke [17] used
a very clever argument to determine the ratio of the adjusted length
scale for nonspherical particles that is valid over the entire range of
Knp, from continuum (Stokes) to free molecule flows. For particles
with aspect ratios of 2 and 3 in free molecule flow, the shape
corrections χp in Eq. (2) based on the statistical average of all
collision orientations in Brownian motion (see, e.g., [13]) are equal
to 1.23 and 1.39, respectively (see Table I of Ref. [17]). Because the
asymptote for the limit ofKnp → ∞ is a straight line, we adopt these
same values for diatomic and triatomic molecules. In other words,
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here we assume that the statistically averaged shape factor for all
diatomic molecules is χ2 � 1.23, and for all triatomic molecules is
χ3 � 1.39. We will see that this very simple rule, which originated
fromextensive studies of small aerosol particles in freemolecule flow
and only depends on the number of atoms in each molecule, is very
effective in predicting the statistically averaged frictional forces act-
ing on nonspherical molecules, regardless of atomic mass ratios of
their nuclei.
For very largeKnp numbers in air, which correspond to either low

pressures, high temperatures, or very small aerosols, the friction
factor for spherical particles approaches the freemolecule expression
first derived by Epstein [23] [this is also the limit for Knp → ∞ of
Eq. (5)]:

fEp �
2

3
d2pρj

�
2πκBT

mj

�
1∕2�

1� απ

8

�
(6)

wheremj is the effectivemass of amolecule of air, and α is a collision
restitution (sometimes referred to as momentum accommodation)
coefficient that depends on the fraction of collisions between the
aerosol and the air molecules that are considered either specular or
diffusive. Values of α typically range from 0.8 to 1.0 for most
aerosols, and when no specific experimental information on the
partition is available, α is approximated as 0.9. Assuming ideal gas
behavior and recognizing that mj � Mj∕NAv (NAv � 6.023×
1026 molecules∕kmol), Eq. (6) can be expressed in the form of
Eq. (2) as

fEp �
6πμdp�1� �απ∕8��

9Knp
(7)

With α � 0.9, the Epstein slip correction factor is simply
CEp�Knp� � 3.32 Knp. The linear dependence of CEp on Knp is
exact under the assumptions used to derive Eq. (6), which yields
results within a few percent or experimental values for near-spherical
aerosols with diameters larger than 1 nm (10 Å), and within 10% of
experimental values for particles twice as small [13]. For particles
comparable in size with small molecules, use of Eq. (7) results in
substantially larger errors (≈40–50%). Equation (7) is not applicable
to molecules for two main reasons. First, in its derivation, due to its
much larger inertia, the velocity of the aerosol is assumed to be small
compared to the velocity of the background gas molecules [23,24].
This simplification alone excludes any particle with inertial mass
comparable to themolecularmass of the background gas. Second, the
quadratic dependence of the friction factor f on dp (recall that
Knp � lj∕dp) is certainly not applicable to molecules because the
effective diameter of a molecule is a very poor proxy for either its
inertia or its friction length scale. The empirical coefficients adopted
from experimental data for the restitution coefficients used in Eq. (7)
refer to aerosols that are roughly uniform in density, and therefore the
d2p dependence assumes that the mass of aerosols of different sizes
varies with d3p. Because of the strong attraction of the positively
charged nucleus of heavy gas molecules, the effective electronic
cloud diameter of such molecules is only slightly larger than those
of the lightest molecules, even though their molecular weights may
be tens of times larger. As a relevant example, the lightest spherical
molecule, helium, is more than 30 times less massive than the xenon
molecule, but is only about 1.5 times smaller in size.
In this work, we show that the replacement of themolecular size by

the molecular mass and the simple shape factor discussed above as
proxies for the friction length yields a functional form of the slip
correction factor that is quite different from the one derived for
aerosols by Epstein. The proposed functional form provides unique
insight on the effective friction forces acting on molecules, and
results in a surprisingly simple estimate for the Schmidt number
(and therefore for the binary diffusion coefficient) of simple gases
in air. In Sec. III, and before we introduce the new slip correction
formulation, we discuss experimental uncertainties and two of the
most robust models for comparison. Then, in Sec. IV we discuss the

proper dimension of molecules for thermodynamic properties (as
opposed to transport properties), and settle on the kinetic diameter as
an appropriate measure of size for our purposes. In Sec. V we use
scaling arguments to derive the proper functional form of the slip
correction factor for molecules, and by doing so we introduce the
concepts of molecular Reynolds number Remi

and no-slip Reynolds
number Rej;ns for the background gas (j � dry air). A comparison
with experimental values for spherical molecules (noble gases) con-
firms our choice of functional form for the slip correction factor, and
allows for the determination of the (constant at standard temperature
and pressure, STP) no-slip Reynolds number Rej;ns for dry air. We
use the same constant value of Rej;ns obtained with data for noble
gases for the remainder of the comparisons with diatomic and tri-
atomic molecules. Section VI explores the compatibility of the slip
correction factor proposed in this work with the CE theory, and offers
some recommendation for the estimation of diffusion coefficients for
unstable trace gases. Concluding remarks are presented in Sec. VII.

III. Standard Models for Determination
of Diffusion Coefficients

Sydney Chapman and David Enskog formalized independently
the statistical mechanics approach to diffusion coefficients by con-
sidering molecular collisions as nonrigid phenomena that depend on
generic attractive and repulsive potentials. The CE theory solves the
Boltzmann equation for generic molecular potentials. Results from
the CE theory received general acceptance as soon as simple power-
law molecular potentials (such as the robust Lennard–Jones 6-12
potential) yielded consistent results for the estimation of viscosity
and thermal and binary diffusion coefficient values for a number of
simple gases. The entire theory, including several higher-order
approximations, is elegantly presented in the monograph by Chap-
man andCowling [25].While obtaining accurate experimental values
for the binary diffusion coefficients of gases continues to be a very
laborious task [3], the ability to relate results fromkinematic viscosity
ν and thermal conductivity k measurements to binary diffusion
coefficients Dij allows for the estimation of binary diffusion coef-
ficients for a wide range of gas combinations, even some that are
nearly impossible to reproduce experimentally. The result from the
CE theory that is most directly relevant to this work is the following
[10]:

Dij �
3

16

�
2πκBT

Mi �Mj

MiMj

�
1∕2 τD

nπσ2ijΩD
(8)

where n is the number density of molecules in mixture, σij is a
characteristic length (diameter) for molecular collisions, ΩD is a
dimensionless collision integral factor, and τD is correction factor
of order unity [10]. For molecules dissimilar in size (e.g., He andN2)
τD can be as large as 1.10, but formolecules similar in size it typically
ranges from 1.00 to 1.02 only. From the range of possible values for
τD, it is clear that the CE theory without reference data from experi-
ments is only able to predict binary diffusion coefficients within
≈10% average deviation, regardless of the molecular potential used.
Average deviations from experimental values of the order of≈5–10%
have been widely reported [10,26], with the lower deviations indicat-
ing fine-tuning of collision parameters, and the upper values indicat-
ing predictions of less well-characterized molecules.
The general success of the CE theory also meant that fewer

independent experiments was designed or carried out after the theory
became widely accepted. To this day, there are very few independent
measurements of gas diffusivities that are not based on some aspect of
the CE theory. The vast majority of the reported data for gas diffusion
is based on gas viscositymeasurements [27] that have been translated
into binary diffusion coefficients for species i diffusing into species j
using the CE theory. Results with the 6-12 Lennard–Jones potential
are considered to be accurate towithin 8–12% (on average) of the best
experimental data available for polar molecules, and generally within
5–8% (also on average) for nonpolar molecules [3]. Deviations from
experimental values by as much as 25% are possible, especially for
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mixtures containing smaller molecules in dilute quantities, or for
mixtures involving water vapor [10,26], but such deviations are not
common.
As mentioned above, because the CE theory is often used to

translate experimental values for binary diffusion coefficients Dij

obtained indirectly from viscosity or thermal conductivity experi-
ments, there are very few data sets that can be considered entirely
independent of the CE theory. Marrero and Mason [28] compiled an
extensive list of results that, together with the report by Svehla [27]
and the earlier compendium by Hirschfelder et al. [26], make up the
bulk of the binary diffusion coefficients available in the literature.
Other sources that also contain similar information and comparisons
include Refs. [10] and [3]. The most reliable data for 22 common
gases of interest, polar and nonpolar, compiled from these and a few
other more recent sources are summarized in Table 1. The usual
procedure is to perform viscosity experiments with a pure gas, and
determine, based on CE theory results, the values of the collision
length σi and maximum energy of attraction ei that offer the best
matchwith the experiments over a range of temperatures [16]. For the
repulsive-attractive Lennard–Jones 6-12 potential

ϕ�r� � 4ei

��
σi
r

�
12

−
�
σi
r

�
6
�

(9)

the length scale σi is the value of r for which the potential ϕ�r� � 0.
To convert viscosity measurements into binary coefficients, the

same values of σi and ei obtained from viscosity or thermal conduc-
tivity experiments are used, although this practice is not always

justifiable. The collision integral Ωμ for viscosity is the same for
thermal conductivity [29], but Ωμ is a slightly larger value than
the collision integral ΩD for binary diffusion at a given temperature
[30]. Tables for Ωμ and ΩD as functions of the dimensionless quan-
tity κBT∕eij are provided in standard references (see, e.g.,
Refs. [3,16,31]). Table 1 includes, when available, values for the
collision diameter σi in angstroms, ei∕κB in kelvins, and the dimen-
sionless κBT∕eij andΩD for 22 gases in air [31]. For consistency, and
because there are substantial differences in the values of these quan-
tities published by different authors, we used the value of σj as
3.617 Å and ej∕κB as 97.0 K for dry air from the updated values
provided by Ref. [31], which are themselves based on a modern
revision of earlier results published in Ref. [26]. The mixture colli-
sion parameters σij and eij are calculated in practice as

σij �
1

2
�σi � σj� (10)

and

eij � ���������
eiej

p
(11)

With Eqs. (10) and (11), the binary diffusion coefficient for species i
diffusing in species j (dry air) is calculated by the CE theory using the
Lennard–Jones 6-12 potential with τD � 1 and assuming ideal gas
behavior (n � 2.504 × 1025 m−3) as

Dij � A

�������������������������������������������
T3�Mi �Mj∕MiMj�

q
σ2ijΩDP

m2∕s (12)

where A is a constant equal to 1.84 × 10−12 in SI units and 1.86 ×
10−7 for pressureP in atmospheres and σij in angstroms. As shown in
Table 1, the collision diameters for most simple gases range from
about 2.5 Å to roughly 5 Å, while the collision integral ΩD is a
dimensionless quantity of O�1�. Using the same Lennard–Jones
6-12 potential, the CE theory gives the following expression for the
dynamic viscosity:

μj � B

����������
MjT

p
σ2jΩμ

kg∕ms (13)

whereB is a constant equal to 2.67 × 10−26 in SI units or 2.67 × 10−6

for σj in angstroms. Again, assuming ideal gas behavior
(ρj � PMj∕RT), the kinematic viscosity νj is readily obtained from
Eq. (13) as

νj �
BR

���������������
T3∕Mj

q
σ2jΩμP

m2∕s (14)

and the Schmidt number given by the CE theory Sci;CE is simply

Sci;CE � νj
Dij

� BR
A

σ2ijΩD

σ2jΩμ

�������������������
Mi

Mi �Mj

s
(15)

Comparing Sci number values (as opposed toDij) with experiments
is preferable for several reasons. Clearly, the explicit effects of
pressure and temperature in Eqs. (12) and (13) are eliminated in
Eq. (15). Both ΩD and Ωμ are weak, mildly oscillatory decreasing
functions of temperature (see, e.g., Refs. [26,30]) that eventually
approach near-constant values ofO�1� for high temperatures. Thus, a
Lennard–Jones molecule has a slightly smaller cross section at high
temperatures when compared to a rigid-sphere model molecule, and
the opposite behavior at low temperatures [26], and the combined
effect of the viscosity to binary diffusion coefficient ratios in Eq. (15)
yields a near-constant value of Sci for most species diffusing in air at
tropospheric conditions. For these reasons, we select dry air at 300 K

Table 1 Molecular and collision parameters for the
Chapman–Enskog theory fitted to experimental data using the

Lennard–Jones 6-12 potential

Gas i Mass σi, Å
ei
κB
, K

κBT

eij

a
Ωa

D Dij, m2∕s Sci;CE

He 4.003a 2.576a 10.2a 9.54 0.7483 7.18 × 10−5 0.218

Ne 20.180a 2.789a 35.7a 5.10 0.8398 3.25 × 10−5 0.481

Ar 39.948a 3.432a 122.4a 2.75 0.9732 1.95 × 10−5 0.803

Kr 83.798a 3.675a 170.0a 2.34 1.0214 1.53 × 10−5 1.021

Xe 131.293a 4.009a 234.7a 1.99 1.0770 1.27 × 10−5 1.236

H2 2.016a 2.915a 38.0a 4.94 0.8449 7.81 × 10−5 0.200

OH 17.007b 3.147b 80b 3.41 0.9190 2.81 × 10−5 0.558

CO 28.010a 3.590a 110a 2.90 0.9588 2.06 × 10−5 0.761

N2 28.013a 3.667a 99.8a 3.05 0.9459 2.04 × 10−5 0.767

NO 30.006a 3.470a 119a 2.79 0.9692 2.07 × 10−5 0.757

O2 31.999a 3.433a 113a 2.87 0.9616 2.07 × 10−5 0.755

HCl 36.458b 3.339b 345b 1.64 1.2672 1.57 × 10−5 0.998

Cl2 70.905a 4.115a 357a 1.61 1.1652 1.22 × 10−5 1.280

HBr 80.908b —— —— —— —— 1.25 × 10−5 1.253d

Br2 159.808a 4.268a 520a 1.34 1.2572 9.99 × 10−6 1.568

I2 253.809a 4.982a 550a 1.30 1.2740 8.05 × 10−6 1.946

H2O 18.015b 3.737b 32b 5.38 0.8314 2.58 × 10−5 0.607

H2S 34.076b 3.623b 301b 1.76 1.2324 1.51 × 10−5 1.035

CO2 44.009a 3.996a 190a 2.21 1.0405 1.53 × 10−5 1.021

N2O 44.012a 3.879a 220a 2.05 1.0665 1.54 × 10−5 1.015

NO2 46.005b 3.765c 210.0c 2.10 1.0580 1.59 × 10−5 0.985

SO2 64.065a 4.026a 363a 1.60 1.1680 1.27 × 10−5 1.234

The values of Sci in air shown in the last column are the most generally accepted values
based on fitted CE theory to experiments. Table entries are reproduced with original
significant figures from the following sources: aBird et al. [31], bMills and Coimbra [16],
cBrokaw andSvehla [32], and dTang et al. [6].With the exception ofmolecularmasses, all
last digits on Tables 1 and 2 should be considered speculative (nonsignificant) given the
experimental uncertainties and approximations involved. Note that the Sci and Dij

values for HBr are not calculated using the CE theory but correspond to the midpoint
of the experimental uncertainty range reported by Tang et al. [6]. Slightly different
Lennard–Jones parameters have been calculated more recently byKim andMonroe [33].
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as the reference bath for this study, and we make comparisons based
onvalues of the Schmidt number Sci for each species. Note that Sci is
clearly a binary quantity just as Dij. We use the single subscript i in
Sci instead of Scij to mean the Sc number of species i in dry air for
simplicity, but also to conform with practice in the heat and mass
transfer literature.
In addition to the CE model, a robust method for the estimation of

binary diffusion coefficients is the method proposed by Fueller et al.
[9] (referred as F in thiswork). Thevalue ofScF is calculated as [9,10]

Sci;F � FPνj��
P

v�1∕3i � �P v�1∕3j �2
T7∕4

�������������������
MiMj

Mi �Mj

s
(16)

where the constantF is equal to 98.7 in SI units, and equal to 107 for
P in atmospheres and T in kelvins. Fueller’s model relies on exper-
imental determination of the diffusion volume vi and vj for simple
atoms and molecules. Those values are tabulated, and do not always
agree with the original values provided in [9]. In this work we adopt
the values presented in [10], which are the most widely cited and are
also in agreement with the original values given by [9]. Note that
Table 11-1 of [10] also provides values for diffusion-volume incre-
ments for C, H, O, N, Cl, and S and (negative increments) for
aromatic and heterocyclic rings that can be used to estimate the
volumes of molecules that are not included in the main table.
Although much simpler to use than the CE theory, Fueller’s model
also requires the use of tabulated values that are optimized using
diffusion data for well-characterized molecules. A perhaps less sat-
isfying feature of themodel is that the incremental volumes for atoms
do not add up to the total volumes of the molecules, which makes
more difficult to combine species reliably based on a limited set

volumes for atoms and simplemolecules. Nonetheless, the simplicity
and robustness of Fueller’s method makes it a popular choice for the
estimation of diffusion coefficients and Sc numbers. Another impor-
tant feature of this method is that it makes explicit the fact that
diffusion coefficient is, at least to a first approximation, only a
function of the molecular mass of the individual species and a
combination of molecular length scales (in this case, the cubic roots
of the different molecular volumes).

IV. On the Characteristic Size of Molecules

The concept of kinetic diameter as the relevant length scale for the
determination of thermodynamic properties of gases was first sug-
gested by [26]. The concept was made popular by Breck’s extensive
use of it in his monograph on zeolite molecular sieves [34]. The
kinetic diameter dki of a molecule is defined exactly as σi but the
value of the length scale for zero potential is calculated by compari-
son with experimental second virial coefficients for gases at different
temperatures [26,35]. The values of dki using second virial coeffi-
cients may differ slightly from the values of σi, which are determined
by comparison with either viscosity or thermal conductivity data. For
this reason, Hirschfelder et al. [26] recommend the use of the kinetic
diameter dki for the determination of thermodynamic properties,
whereas σi should be used for transport properties. More recently,
KimandMonroe [33] showed that higher accuracy calculations of the
collision integrals for the Lennard–Jones potentials yield very close
values between σi and dki for spherical (noble gas) molecules.
Mehio et al. [35] developed detailed ab initio quantum mechanics

calculations that add strong credibility to the concept of kinetic
diameters as a physical representation of the effective size of
molecules. In this work we adopt commonly found values for kinetic

Table 2 Kinetic diameters dki , molecular Reynolds numbers �uidki∕νj, shape factors χ i and
computed Sci using the Chapman–Enskog theory, the proposed model C given by Eq. (24), and

Fueller’s model F given by Eq. (16) for the 22 molecules listed in Table 1

Gas i dki ; Åej �ui, m∕s Remi
× 103 χi Sci range Sci;CE Sci;C δC, % Sci;F δF, %

He 2.60 1259.67 10.5 1.00 0.21h − 0.23h 0.218 0.223 �2 0.233 �7

Ne 2.75 561.03 4.93 1.00 0.47h − 0.49h 0.481 0.501 �4 0.504 �5

Ar 3.40 398.32 4.33 1.00 0.80h − 0.81h 0.803 0.705 –12 0.816 �2

Kr 3.60 275.32 3.16 1.00 0.98h − 1.10h 1.021 1.021 0 1.036 �2

Xe 3.96 219.95 2.78 1.00 1.21h − 1.37abe 1.236 1.278 �3 1.303 �5

H2 2.89 1775.02 16.4 1.23 0.20h − 0.21h 0.200 0.195 –3 0.214 �7

OH — — 611.13 — — 1.23 0.56f − 0.80f 0.558 0.566 �1 0.518 –7

CO 3.76 476.20 5.72 1.23 0.76a − 0.76hi 0.761 0.726 –5 0.792 �4

N2 3.64 476.18 5.53 1.23 0.75h − 0.78h 0.767 0.726 –5 0.778 �1

NO 3.17 460.09 4.66 1.23 0.60f − 0.76h 0.757 0.751 –1 0.682 –10

O2 3.46 445.53 4.92 1.23 0.76h − 0.79h 0.755 0.776 �3 0.784 �4

HCl 3.20 417.40 4.26 1.23 0.91h − 1.05ef 0.998 0.828 –17 0.880 –12

Cl2 3.20 299.30 3.06 1.23 1.12f − 1.39f 1.280 1.155 –10 1.211 –5

HBr 3.50 280.19 3.13 1.23 0.94f − 1.76f 1.253d 1.234 –2 1.207 –4

Br2 3.50 199.37 2.23 1.23 1.44f − 1.73f 1.568 1.734 �11 1.650 �5

I2 — — 158.20 — — 1.23 1.76f − 2.91f 1.946 2.185 �12 1.621 –17

H2O 2.65 593.79 5.02 1.39 0.50g − 0.65g 0.607 0.658 �8 0.616 �1

H2S 3.60 431.74 4.96 1.39 1.04b − 1.04i 1.035 0.905 –13 0.859 –17

CO2 3.30 379.91 4.00 1.39 1.00h − 1.18h 1.021 1.028 �1 0.989 –3

N2O 3.30 379.89 4.00 1.39 1.02h − 1.19h 1.015 1.028 �1 1.096 �8

NO2 — — 371.57 — — 1.39 0.81f − 1.69f 0.985c 1.051 �7 0.935 –5

SO2 3.60 314.87 3.62 1.39 1.09f − 1.44f 1.234 1.240 0 1.231 0

Comparing the C and Fmodels against the most widely accepted values obtained by the CE theory, we find that the mean bias
deviation is of the same magnitude but slightly smaller for the simple C model [Eq. (24)] at −0.56% versus 1.23% for the F
model [Eq. (16)]. The values of δC and δF are the relative deviations with respect to Sci;CE. The cumulative relative standard
deviation is exactly the same (7.5%) for both C and F models, a value that is compatible with the experimental uncertainty
reported by [8] for both the twin tube (TT) and the arrested flow (AF) experimental methods. The ranges of reported values for
Sci in the sixth column are from the following references: aRef. [31], bRef. [16], cRef. [32], dsee footnote of Table 1, eRef. [26],
fRef. [6], gRef. [37], hRef. [27], iRef. [3], and jRef. [34].
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diameters of monoatomic, diatomic, and triatomic molecules in the
literature [26,34]. We will show later that the specific choice of
kinetic diameter is (at most) of secondary importance in the deter-
mination of binary diffusion coefficients and Schmidt numbers. We
use kinetic diameters for the determination of the slip correction
factor in the next section because the molecular Reynolds number
Remi

is determined by a thermodynamic property ( �ui) of the diffusing
gas for a given thermodynamic state of the background gas. Table 2
lists the kinetic diameters dki for 19 of the 22 species considered in
this work. These are commonly accepted values from standard
references [26,34]. Kinetic diameters for OH, I2, and NO2 are not
reported here because there are discrepancies in the values found in
the literature for these molecules. As we shall see, the absence of a
few values does not interfere with the analysis and conclusions.

V. Slip Correction Factor for Gas Molecules

To derive a proper functional form of the slip function for small gas
molecules, we invoke the concept of correlation path length devel-
oped by Taylor [36] for particles and vortices, and applied here to
molecules. The correlation path length concept is well known in the
aerosol and turbulence research communities [15]:

lcp �
�����
�u2i

q Z
∞

0

R�τ� dτ (17)

where R�τ� is the Lagrangian velocity autocorrelation coefficient for
the diffusing particle, and τ is the dimensionless time associated with
the motion of the particle. The correlation path length lcp is thus the
distance for which the motion of the molecule is well-correlated with
its status at τ � 0. The diffusion coefficient for a molecule under-
going generic diffusion by continuous movements first proposed by
Taylor [36] is given by (see, e.g., [15])

Dij � �uilcp (18)

Equating Eq. (18) with Eqs. (1) and (2), the correlation path is
given by

lcp �
κBT

f �ui
� κBTC�Π�

3πμdkiχi �ui
(19)

Consistent with the discussion above, we seek a functional form for
C�Π� that renders the correlation path lcp independent of both the
diffusion molecule mean velocity and its diameter. In this way, the
binary diffusion coefficient in Eq. (18) is composed of two indepen-
dent parts: one that depends solely on the diffusing gas velocity ( �ui)
and another (lcp) that depends on the friction of the background gas j
(dry air) and, at most, on the shape (not size) of the diffusing
molecule. This is accomplished through straightforward dimensional
analysis by setting C�Remi

� � Remi
∕Rej;ns, where

Remi
� �uidki

2νj
(20)

and Rej;ns is a reference Reynolds number that depends only on the
thermodynamic state of the background gas, and therefore is a
constant for given values of temperature and pressure. The molecular
correlation path is thus

lcp �
κBT

6πμjνjχiRej;ns
(21)

Note that while the slip correction factorC�Remi
� depends linearly

on the kinetic diameter dki of the diffusing molecule, the molecular
friction factor

fC � 3πμjνjχiRej;ns
�ui

(22)

is not explicitly dependent on the size (dki ) of the diffusing molecule

i, but rather depends on its shape factor χi and its mean velocity �ui �����������������������
8RT∕πMi

p
(which is uniquely determined by the molecular mass

Mi and the temperature of the bath T).
The fC dependency on dki in Eq. (22) is substantially different

from the quadratic form derived byEpstein [23] and shown in Eq. (6),
but it is consistent with the concept of correlation path length for

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 1 Schmidt numbers for noble gases i diffusing in dry air j as a function of ϵ � Mi∕M2. Circles correspond to the values calculated using the
Chapman–Enkog (CE) theory with the 6-12 Lennard–Jones potential, whereas vertical bars correspond to the maximum range of values reported in
standard references (see Sci uncertainty ranges in Table 2).
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small aerosols. For aerosol particles in air at STP, lcp reaches a

minimum of about 7 nm for dp;min ≈ 200 nm and grows with d1∕2p

for dp > dp;min and with d−1∕2p for dp < dp;min (see, e.g., Fig. 2.4 of
[15]). Equation (21) indicates that, at the molecular level, lcp ∝ d0ki ,
as the dynamic shape factor χi and the molecular velocity �ui replace
molecular size in the determination of the molecular friction factor.
Once the functional form of the friction factor fC is known, the

Schmidt number (νj∕Dij) for gasmolecules diffusing in dry air can be
readily calculated as

Sci;C � νj
�uilcp

� 3NAv���
2

p
�
π

R

�
3∕2�μjν2jRej;ns

T3∕2

�
χi

������
Mi

p
(23)

Note that the terms in brackets in Eq. (23) depend only on the
properties of the background air and, according to the above interpre-
tation, must be a constant for a given thermodynamic state of the bath.
The remarkable feature of Eq. (23) is that it provides a simple way to
estimate Sc numbers (and thus binary diffusion coefficients) for any
simple molecule based only on the molecular mass and the number of
atoms in the molecule, provided that the constant value of Rej;ns is
known for the background gas. It also implies that the Sc numbers of
spherical molecules should vary with the square root of the molecular
mass. This is confirmed by examiningFig. 1,where theSc numbers for
five spherical molecules (noble gases) are very well fit by the simple
expression Sci � 0.11

������
Mi

p � 0.60
���
ϵ

p
, where ϵ is the ratio Mi∕Mj

used here to render the correlation dimensionless.
With Sci∕ϵ1∕2 � 0.11 for the noble gas molecules, the value of

Rej;ns for dry air at 300 K and 1 atm is determined fromEq. (23) to be
equal to 1.36 × 10−5, and the slip correction factor is thus simply
C�Remi

� � 7.35 × 104Remi
. We will use this same constant of pro-

portionality for the remainder of the analysis below.

VI. Results and Discussion

Figure 2 shows that the value of Rej;ns found by fitting the data to
noble gases indeed applies to diatomic (χ2 � 1.23) and triatomic
(χ3 � 1.39) molecules as well, so that all molecules are very well
correlated by

Sci;C � 0.11χi
������
Mi

p
� 0.60χi

���
ϵ

p
(24)

which is a remarkably simple expression that can be used to accu-
rately estimate Sc numbers for simple molecules diffusing in air
at STP.
The physical interpretation for the no-slip background gas

Reynolds number is as follows: Rej;ns expresses the limiting value
of Remi

for which a slip correction is equal to unity. In other words,
the farther away the value of Remi

for a given molecule is from the
constant (much smaller) value of Rej;ns, the higher the slip experi-
enced by the molecule. A hypothetical very dense and slow mol-
ecule would experience Stokes drag friction with C�Remi

� � 1, but
since such massive molecule does not exist, there is always a need
for slip correction for air at STP. Because the main contributor to the
value of Remi

for each molecule is the mean molecular speed �ui,
which is inversely proportional to the square root of its molecular
massMi, the faster moving, lighter molecules are characterized by
higher values of Remi

, and therefore these molecules experience
more slip. This is consistent with the idea of increasing slip for
larger values of particle Knudsen numbers from the aerosol theory.
Note that the molecular Reynolds number proposed here does not
have the same meaning of the usual particle Reynolds number. The
former is higher for lighter molecules, whichmove at higher speeds.
The latter is smaller for smaller particles because both the size of the
particle and the relative velocity between the particle and the flow
are smaller for smaller particles. An important difference between
the present approach is that it yields a friction factor fC that is
independent of the size of the molecules, but rather depends on their
molecular mass and mean speed. As discussed in the next subsec-
tion, this interpretation is entirely compatible with the CE model
estimate [Eq. (15)], while dispensing with the need for tabular
values.

A. Compatibility with the Chapman–Enskog Theory

Equating Sci � νjf∕κBT with Eq. (15), it is possible to derive a
functional form for the friction factor f directly from the CE theory
using the 6-12 Lennard–Jones potential:

10-1 100 101
10-1

100

Fig. 2 Ratio of Schmidt number Sci and shape factor χ i as a function of the molecular mass ratio ϵ for all molecules in this study. Note that ϵ varies by
more than two orders of magnitude. The values of χ i are as follows: 1 for monoatomic, 1.23 for diatomic, and 1.39 for triatomic molecules. The range of
values (in red) is from the reported spread of data and models listed in Table 2.
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fCE � κBΩDσ
2
ijP

A �ui

������������������
8R

π�1� ϵ�

s
(25)

Comparing Eq. (25) with Eq. (22) allows us to determine that Rej;ns
must be equal to

Rej;ns �
κBΩDσ

2
ijP

3πAμjνjχi

������������������
8R

π�1� ϵ�

s
(26)

for both formulations to be equivalent. Furthermore, according to our
assumptions, thevalue ofRej;nsmust be constant for given conditions
of temperature and pressure, which implies that the ratio

rij �
ΩDσ

2
ij

χi
������������
1� ϵ

p (27)

must be a constant for all species. Indeed, for σij in angstroms, rij ≈
7.1 (with≈8% relative standard deviation) for all the gases in Tables 1
and 2 (again excluding HBr due to the lack of reliable σi and ei
values). Similarly, the quantity

ΩDσ
2
ij

χi
������������
1� ϵ

p
�

Pνj
AT3∕2

�
� ΩDσ

2
ij

Ωμσ
2
j

�������������������
Mi �Mj

p �
BR
χiA

�
� Sci

χi
������
Mi

p ≈ 0.11

is also found to be nearly constant with ≈8% relative standard
deviation for all species. Thus, the aerosol-derived theory for the slip
correction factor and the simple correlation [Eq. (24)] for Sci are fully
compatible with the CE theory within the range of uncertainties
involved. Note that the value of the no-slip Reynolds number for
air at different temperatures and pressures (assuming that the ideal
gas behavior holds, and temperatures are well above the critical
temperatures for all species involved) can be found from Eq. (23) as

Rej;ns ≈ 3.39 × 10−21
T5∕2

Pν3j
(28)

Another way to verify the compatibility of the proposed approach
with the CE theory is to plot the proposed slip factor correction
C�Remi

� � Remi
∕Rej;ns � 7.35 × 104Remi

versus the value of the
slip correction factor C�Π� that returns the CE theory values for Sci
presented in the last column of Table 1. Figure 3 shows that the
proposed slip factor correction is very well correlated for species
spanning two orders of magnitude in molecular mass ratio. The
agreement in Fig. 3 provides strong support for the slip correction
approach and the assumptions made in the previous sections.
Although the agreement with the CE theory is strong, noticeable

deviations are observed for some molecules containing hydrogen
(H2O, HCl,H2S) and for poorly characterized molecules such asBr2
and I2. The F method underestimates the value of Sci for I2, whereas
the C method barely misses the reported range for Br2 given by [6].
Such deviations are expected given the simplicity of both approaches.
In general, larger deviations from the spherically symmetric Len-
nard–Jones potential are expected for nonpolar molecules due to the
larger values of the approximate angle-independent potential for
polarmolecules δ	 � ζ2∕eiσ3i , where ζ is the reduced dipolemoment
for the polar molecule [26]. The small deviation for SO2 (which has a
higher value of δ	 comparedwithH2S andHCl) seems to indicate that
it is the length of the hydrogen single bond that is somewhat under
predicted by the fixed value of χ3 � 1.39. Both mechanisms seem to
contribute to the uncertainty for the molecule with the highest value
of δ	 in the table (H2O). Clearly, instead of using a constant shape
factor for all diatomic and another for all triatomic species, one is free
to make small adjustments to the aspect ratio χi so to take into
consideration the length of the bonds, the bent angle, and the size
ratio of individual atoms in each molecule. However, the objective of
this work is to show that a set of very simple universal rules taken
directly from the extensive literature of aerosol theory is able to
estimate Sci values at least as well as much more complex models,
and within the experimental uncertainty of modern techniques.

B. Practical Estimates

Another point worth mentioning is that the smaller, stable mole-
cules that are best characterized experimentally (the ones with small
ranges of Sci in Table 2) were used to adjust the semi-empirical
parameters in both the CE theory and the Fmodel. For this reason, the

0 2 4 6 8 10 12 14 16

10-3

200

400

600

800

1000

1200

1400

Fig. 3 The slip correction factorC�Π� as a function of themolecularReynolds numberRemi
. Thediscrete circle values correspond to the values ofC�Π� in

Eqs. (1) and (2) that return the exact values given by theCE theory in Table 1. The high coefficient of determination (R2 > 0.99) in this figure corroborates
the choice of the functional form for C�Π� � Remi

∕Rej;ns.
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CE model is likely to be much closer to experiments for those well-
characterized molecules. For unstable trace gases, it is likely that the
CE model underpredicts the value of the binary diffusion coefficient
by as much as 10% given that the value of τD in Eq. (12) was taken as
unity. Since the binary diffusion coefficient is underpredicted, the
values of Sci for poorly studied molecules are likely to be over-
predicted by ≈10%.
Massman [12] argued that the incorrect use of Graham’s law led

some researchers to estimate the binary diffusion coefficient of ozone
in air from the (still poorly characterized) binary coefficient of water
vapor in air using the inverse square root of the respective molecular
masses. We showed here that this approximation is not only compat-
ible with the CE theory, but is actually enforced by it, as long as the
molecules have the same number of atoms. BothH2O andO3 are bent
molecules, butwhileH2O has two single hydrogen bonds,O3 has one
double and one single bond. Potential minor adjustments to account
for the different bonds make the ratio not quite exact, but the strong
agreement found in this work with no adjustments to the values of χi
indicates that using the square root ratio is a very good approximation
andwithin experimental uncertainty. The recentmeasurements by [8]
place the value of ScO3

in air at 300 K and 1 atm at 0.868, with the
highest experimental value at 0.935 and the lowest at 0.810. This is
substantially lower than the CE theory estimate of 1.016 reported by
Massman [12]. Massman [12] estimated ScO3

as 0.951, about 7%
lower than his own CE theory estimate. Equation (24) with coeffi-
cient 0.11 yields a value of 1.059, which is compatible with the CE
theory value given by [12]. According to the above discussion, if the
coefficient in Eq. (24) is reduced to 0.10 given that ozone is not a
molecule that has entered the experimentally adjusted database, the
model proposed here yields ScO3

� 0.963, which is still 3% higher
than the range of measured values given by [8]. Interestingly, esti-
mating ScO3

from the value of another bent molecule (SO2, which
is better characterized than H2O) as

�����������������������
MO3

∕MSO2

p
× ScSO2

yields
ScO3

� 0.929, a value that is compatible with the experiments of
[8] and the earlier estimate by [12].

VII. Conclusions

This work advances our understanding of gaseous diffusion air in
many different ways. First, it summarizes both classical and recent
experimental results for polar and nonpolar molecules and for stable
and unstable trace gases that are important for a large number of
atmospheric processes on Earth.
Second, it shows that the rigorous results obtained for small

aerosols diffusing in the free molecule flow regime can be extended
tomolecular scales as long as the proper friction coefficients are used.
The choice of the functional form for the slip correction coefficient
used in this work is not only compatible, but also strongly supported
by the CE theory, which approaches the molecular diffusion problem
from Boltzmann statistics. The extension of the Stokes–Einstein–
Taylor theory to molecular levels with substantial slip contributed in
this work is entirely novel. Comparison with experimental results at
STP conditions shows that molecules in this regime behave sta-
tistically as small aerosols, which is likely to result in new physical
insights given the extensive results for aerosol diffusion in different
flow configurations.
Third, the arguments used to derive Eq. (23) result in a very simple

correlation, Eq. (24), which reproduces Schmidt numbers and binary
diffusion coefficients within the general uncertainty of much more
complex models, and also within the experimental uncertainty of
modern experimental techniques. The proposed correlation relies on
a simple rule that links the aspect ratio of molecules to the number of
atoms in the molecule, dispensing with the need for molecular
volumes or collision length scales. Diffusion coefficients for simple
molecules (with molecular mass Mi) in dry atmospheric air (with
molecular massMj) can be readily evaluated at the reference temper-
ature of 300 K as

Dij�300 K� � νj
0.6χi

���������������
Mi∕Mj

p (29)

where νj is the viscosity of air at 300 K, and χi is 1.00 for mono-
atomic, 1.23 for diatomic, and 1.39 for triatomic molecules. As
shown in Table 2, use of Eq. (29) yields results at least as good as
the semi-empirical model by Fueller et al. [9], which is used broadly
in the literature but requires tabulated values for the volume of
different atoms and molecules.
Once the diffusion coefficient is estimated at 300 K, it can be

translated to other bath temperatures by using the well-known con-
version relations derived from Eq. (12), or simpler (but more accu-
rate) semi-empirical relations such as

Dij�T� � Dij�300 K��T∕300 K�b (30)

Many authors in both the atmospheric physics and the aerospace
engineering communities use different values of b for air (typically
between 1.50 and 1.85) depending on the temperature range under
study and the reference temperature used. For most applications in
air, the b exponent can be taken as 1.75 (see, e.g., [6]) as per Fueller’s
semi-empirical method [Eq. (16)], or adjusted to experimental values
when those are available. For example, Langerberg et al. [8] recom-
mends a b value of 1.83 for ozone diffusing in air for a reference
temperature of 273 K. Similarly, a b exponent of 1.685 is recom-
mended by Marrero and Mason [28] for H2O in air for a reference
temperature of 256 K. The CE theory predicts a value of b ∼ 1.5� δ
[see Eq. (12)] with positive δ deviations arising from the ΩD term as
this value changes with temperature more strongly at low temper-
atures (ΩD ∼ κBT∕e−0.44ij for κBT∕eij < 4) and becomes almost con-
stant at high temperatures (ΩD ∼ κBT∕e−0.17ij for κBT∕eij > 4). This
behavior implies a value of b given by the CE theory ranging from
1.67 to 1.94. Just as with the CE theory, the slip-correction theory
proposed here predicts that the Sc number must be nearly indepen-
dent of temperature, whichmeans that the temperature dependence of
the binary diffusion coefficient must follow the behavior of the
kinematic viscosity. Equation (28) shows that the nonslip back-
ground flow Reynolds number varies inversely with pressure and
with the 5/2 power on temperature, as well as with the inverse cubic
power of the kinematic viscosity of the bath gas. Equation (28)
combined with Eqs. (1) and (22) yield a friction factor fC that varies
with T∕νj, and a binary diffusion coefficients in air varying directly
with νj, as expected. The kinematic viscosity of air for temperatures
between 250 and 400 K can be well approximated by the simple
power-law behavior νair ∼ 9.6 × 10−10T1.7 m2∕s, which implies a
value of b ∼ 1.7. If the temperature is not too far removed from
300 K, all these slightly different values of b yield binary diffusion
coefficients that are acceptable for most practical applications.
Finally, Eq. (28) and the procedure outlined in Sec. V can be used
to estimate the no-slip molecular Reynolds numbers for other back-
ground gases such as Ne, Ar,N2,O2, and CO2 with similar accuracy
as reported in this work (see additional tables in the supplemental
materials S1; or go to the Supplemental Materials link that accom-
panies the electronic version of this paper at http://arc.aiaa.org).
The fact that the number of atoms in a molecule is shown in this

work to be a good proxy for the molecular aspect ratio can be
explained by the following argument: due to the strong attraction
of heavy nuclei, the electron clouds of most atoms are of comparable
size, with the exception of the smallest atoms of hydrogen and
helium. However, helium is inert, and the longer, single bonds of
hydrogen tend to offset its smaller size. This argument is straightfor-
ward for diatomic and colinear triatomic molecules (e.g., carbon
dioxide). For bent triatomic molecules the argument is less obvious,
but the good agreement found using a constant value of χ3 for four
triatomicmolecules that do not contain hydrogen bonds gives support
to the overall approach (see the excellent agreement shown in Fig. 3).
Finally, it is entirely possible that very simple rules distinguishing

covalent and ionic bonds or colinear and bent molecules could be
developed to improve the agreement between the proposed correla-
tion, Eq. (24), and experimental values. However, the simplicity of
the model proposed here and its ability to reproduce molecular
behavior based on molecular masses and shape factors only are
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intellectually satisfying and of great practical relevance in both
science and in engineering applications.
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