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Need for Absolute Localization

1 [1] NASA, 2023  [3] JAXA, n.d.  

[2] Astrolab, 2023  [4] Keane et al., 2022 

Endurance (concept), 2030[4]FLEX, 2026[2] LUPEX, 2028[3]CADRE, 2026[1]

Sample collection rovers must 
geotag samples with high accuracy.

Precise absolute localization of lunar 
rovers is essential.



Technology 
demonstrations

Gateway

EVAs

Lunar surface 
to surface

Rovers

Ground station 
monitoringGround

stations

Optical 
navigation

Inter-satellite 
ranging

Referenced Schier, 2022.

Terrestrial GPS 
sidelobe signals

*LANS (Lunar Augmented Navigation Service) will provide GNSS-like capabilities.
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The Upcoming Lunar PNT Landscape
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Rover

Lunar Pathfinder

What’s Available for Early-Stage Rover Missions
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Rover

Lunar Pathfinder

What’s Available for Early-Stage Rover Missions

How can we localize a rover with this limited infrastructure?
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Single-Satellite Localization for Stationary Rover[5]

6 [5] Coimbra et al., 2024

𝑡2
𝑡3𝑡1

𝑡1…𝑡3

Single satellite 

• Accumulate measurements over time 
(measurements from multiple virtual 
satellites)

No navigation payload 

• Use Doppler shift observables

Align with the expected infrastructure for early-stage lunar rover missions. 



Results from Stationary Rover Scenario[5]

7 [5] Coimbra et al., 2024

𝑡2
𝑡3𝑡1

𝑡1…𝑡3

Using a single satellite, the rover was able to localize to sub-10-m accuracy 

after 11.2 hours. 

Drawback



Results from Stationary Rover Scenario[5]

8 [5] Coimbra et al., 2024

𝑡2
𝑡3𝑡1

𝑡1…𝑡3

Using a single satellite, the rover was able to localize to sub-10-m accuracy 

after 11.2 hours. 

Drawback

Can we still achieve good localization accuracy while the rover is moving?
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High-Level Approach

10

𝑡1 𝑡2 𝑡3

𝑡2
𝑡3𝑡1

Assumption:

Rover motion model is known.

We can still leverage measure-
ments from multiple virtual 
satellites as the rover is 
moving.



Contributions
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𝑡1 𝑡2 𝑡3

𝑡2
𝑡3𝑡1

1. Develop a localization filter for a moving rover using a single satellite without a 
navigation payload.

2. Simulate scheduled mission cadence
 based on a planned long-duration
 rover traverse.

3. Quantify the filter’s rover velocity
 noise tolerance to maintain
 desired accuracy.



• Rover has an erroneous initial position estimate.

• Assumes that the rover knows its velocity.
• Precompute relative displacements from global start.

• Minimize the weighted Euclidean norm of residual. 

• Update initial rover state. 

• Propagate through to current time step using a growing, fixed-anchor batch.

Weighted Batch Filter
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Doppler Measurement Model
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Observed pseudorange rate

True range rate Rel. clock drift Noise

Doppler measurement

Thermal Clock

Zero-mean white Gaussian noise Dubin’s Car Model*

*Method is independent of rover motion model.
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Rover Model

15

75 cm high gain 
omnidirectional antenna Stanford Research 

Systems (SRS) PRS 10[5]

NASA Endurance Mission Concept[4]

[4] Keane et al., 2022

[5] Coimbra et al., 2024

Poincaré Q Waypoint
59.12448˚ S, 161.05104  ̊E

Map of the rover’s long-range traverse[4]

Sample return mission



Satellite Visibility

Definition[7, 8]
C/N0 > 30 dB-Hz

Elevation > 5˚

1st Occultation 3.28 hours

2nd Occultation 3.36 hours

Satellite Model
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ESA’s Lunar Pathfinder[6]

Expected Launch Date: 2026
Orbital period: 10.84 hours

[6] SSTL, 2022  [8] Melman et al., 2022   

[7] Nardin et al., 2023 [9] Coimbra et al., 2025 

Excelitas Rubidium 
Atomic Frequency 
Standard (RAFS)[9]

Orbital Elements[6]

Semi-major axis 5740 km

Eccentricity 0.58

Inclination 54.856˚

RAAN 0˚

Argument of the Periapsis 86.322˚

Mean Anomaly 80˚

Visible Trajectory
Not Visible Trajectory
Mean Anomaly of 180˚
Rover Location



Simulation Parameters
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Initial epoch 2030/10/01 00:00:00 UTC

Total simulation length 2 orbital periods (21.68 hours)

Initial rover position error 100 m 𝜎 (3D)

Measurement sampling rate 1 Hz

Filter update interval 180 seconds

Number of Monte Carlo runs 100

Define 𝜇 to be mean position error across all Monte Carlo runs.

Performance Metric: 

𝜇 ≤ 10 m is achieved before hitting the second occultation period (<18 hours).
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Benchmark: No Rover Velocity Noise

19

Scenario Time to reach ≤10 m

Stationary[5]
Mean 11.2 hours

99th percentile 15.4 hours

Moving at 
Constant Speed

Mean 11.3 hours

99th percentile 16.3 hours

Leverage planned mission dynamics to improve 
localization with imperfect motion knowledge.

1. The rover has a known motion model.

2. The rover is moving continuously.

[5] Coimbra et al., 2024



Concept of Operations for a Long Traverse Lunar Rover

20 [4] Keane et al., 2022

[4]
Total planned traverse: 2000 km
Average traverse speed: 0.5 km/hr (0.14 m/s)
Stop-Go Rover Motion Model
• Nominal: Rover stops every 300 m for 10 min to image.
• Mission stops: Every 2 km for 1 hr.

Constant Speed Stop-Go



Comparing Performance for Different Motion Models

21

Applying 7.0 mm/s velocity noise (5% of the commanded velocity).

Constant Speed Stop-Go

14.8 hours to ≤10 m 13.9 hours to ≤10 m



Sensitivity Study on Rover Velocity Noise

22

Velocity Noise 
[mm/s]

% of 
commanded 

velocity

Mean time to 
reach ≤10 m [hr]

0.0 0.0% 11.2

6.0 4.3% 13.3

7.0 5.0% 13.9

8.0 5.8% 14.3

9.0 6.5% 14.9

10.0 7.2% 15.5

11.0 7.9% >21.7

10.0 mm/s applied noise



Concluding Remarks
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Contributions
1. Develop a localization filter for a moving rover using a single satellite without a navigation payload.

2. Simulate scheduled mission cadence based on a planned long-duration rover traverse.

3. Quantify the filter’s rover velocity noise tolerance to maintain desired accuracy.

Conclusions
1. Showed that the rover no longer needs to be stationary to localize.

2. Leveraged planned mission dynamics to improve localization under non-ideal conditions.

3. Achieved desired accuracy before 2nd occultation with up to 7% added velocity noise. 

Future Work

1. Improve model fidelity (e.g., time-correlated noise).

2. Stress test on more difficult rover motion paths (turns, varying speed).

3. Investigate the localization improvement with more than one satellite.
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Thank you!
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