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Need for Absolute Localization M\é

CADRE, 20261 FLEX, 20262 LUPEX, 2028531 Endurance (concept), 2030/

Sample collection rovers must - Precise absolute localization of lunar
geotag samples with high accuracy. rovers is essential.

[1] NASA, 2023 [3] JAXA, n.d. Stanford University

[2] Astrolab, 2023 [4] Keane et al., 2022
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The Upcoming Lunar PNT Landscape LAB
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*LANS (Lunar Augmented Navigation Service) will provide GNSS-like capabilities.

2 Referenced Schier, 2022. Stanford University



What’s Available for Early-Stage Rover Missions LAB

W Lunar Pathfinder
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3 Stanford University
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How can we localize a rover with this limited infrastructure?

3 Stanford University
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Prior Work: Single-Satellite Localization for a Stationary Rover

5 Stanford University




Single-Satellite Localization for Stationary Rovers  |[ag

Align with the expected infrastructure for early-stage lunar rover missions.

Single satellite 2

* Accumulate measurements over time b , 3
(measurements from multiple virtual ..;‘:.,
satellites) Y

No navigation payload

« Use Doppler shift observables

[5] Coimbra et al., 2024

Stanford University
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Results from Stationary Rover Scenariol” LAB

Using a single satellite, the rover was able to localize to sub-10-m accuracy

ty

Drawback t1 t 3
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[5] Coimbra et al., 2024 Stanford University
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Can we still achieve good localization accuracy while the rover is moving?

8 [5] Coimbra et al., 2024 Stanford University
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i Approach: Moving Rover Scenario

= ]
©) () (@

9 Stanford University



High-Level Approach LAB

Assumption:

Rover motion model is known.

I :

4 ) tl t3

We can still leverage measure-
ments from multiple virtual
satellites as the rover is
moving.

\ v

Stanford University
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Contributions LAB

1. Develop alocalization filter for a moving rover using a single satellite without a
navigation payload.

2. Simulate scheduled mission cadence ty
based on a planned long-duration
ty t3
rover traverse. .
SN
&%

3. Quantify thefilter’srover velocity
noise tolerance to maintain
desired accuracy.

Stanford University



Weighted Batch Filter LAB

* Rover has an erroneous initial position estimate.

* Assumes that the rover knows its velocity.
* Precompute relative displacements from global start.

* Minimize the weighted Euclidean norm of residual.

C=lp— P lliv

Y
Observed Expected

R —2 —2
W = dlag(atotyl, . atot’N)
Opy = 0f + 02+ 0- + 0
v/ v v
Thermal Clock Eph. Rovervelocity

» Updateinitial rover state.
* Propagate through to current time step using a growing, fixed-anchor batch.

12 Stanford University
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Doppler Measurement Model LAB
Doppler measurement Observed pseudorange rate
. . fr‘ fr‘ . .
D:_ﬁ > P:(US@'||;8@+C(5ts_5tr)+€p
C Ls Cl
— —— Y
Truerange rate Rel. clock drift Noise
Zero-mean white Gaussian noise Dubin’s Car Model*
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Thermal Clock 9
= U

*Method is independent of rover motion model.

13 Stanford University
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;'i Validation using the Endurance Rover: Modeling and
Simulation Parameters
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Rover Model I LAB

NASA Endurance Mission Concept!*
Sample return mission
75 cm high gain

omnidirectional antenna Stanford Research
Systems (SRS) PRS 10
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15 4] Keane et al., 2022 Stanford University
[5] Coimbra et al., 2024
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[6] SSTL, 2022
[7] Nardin et al., 2023
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Simulation Parameters
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Initial epoch

2030/10/01 00:00:00 UTC

Total simulation length

2 orbital periods (21.68 hours)

Initial rover position error 100 m o (3D)
Measurement sampling rate 1 Hz
Filter update interval 180 seconds
Number of Monte Carlo runs 100

Define u to be mean position error across all Monte Carlo runs.

Performance Metric:

1 < 10 mis achieved before hitting the second occultation period (<18 hours).

17

Stanford University
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@ Results: Localization Performance and Sensitivity Study

18 Stanford University




Benchmark: No Rover Velocity Noise LAB

Position Error vs Time
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Leverage planned mission dynamics to improve

localization with imperfect motion knowledge. 00 25 50 75 100 125 150 175 200
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19 [5] Coimbra et al., 2024 Stanford University
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Concept of Operations for a Long Traverse Lunar Rover LAB

8 Y Totalplanned traverse: 2000 km

{88 Average traverse speed: 0.5 km/hr (0.14 m/s)

| Stop-Go Rover Motion Model

* Nominal: Rover stops every 300 m for 10 min to image.
» Mission stops: Every 2 km for 1 hr.

Constant Speed Stop-Go

10 Sat Occult. 10 Sat Oceult.
EN ENC
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z z

2 2
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20 [4] Keane et al., 2022 Stanford University




Comparing Performance for Different Motion Models L”A“é

Applying 7.0 mm/s velocity noise (5% of the commanded velocity).

Constant Speed Stop-Go
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Sensitivity Study on Rover Velocity Noise LAB
10.0 mm/s applied noise
o .. .
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22 Stanford University
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Concluding Remarks LAB

Future Work

1. Improve model fidelity (e.g., time-correlated noise).

2. Stress test on more difficult rover motion paths (turns, varying speed).
3. Investigate the localization improvement with more than one satellite.

23 Stanford University
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Related ION GNSS+ 2025 Papers from NAV Lab LAB

Session F1: K. liyama et al., “Constellation Design and Staged Deployment for the Lunar
Navigation Satellite System.”

Session F1: G. Casadesus Vila et al., “Lunar Surface Station to Support Lunar Positioning,
Navigation, and Timing Services.”

Session F3: K. liyama et al., “Plasmaspheric Delay Characterization and Comparison of
Mitigation Methodologies for Lunar Terrestrial GNSS Receivers.”

Session D6: A. Dai et al., “Full Stack Navigation, Mapping, and Planning for the Lunar
Autonomy Challenge,” Adam Dai @ 2:58 PM on Friday, Holiday 2-3 (Second Floor).

Stanford University

25




Single-Satellite Doppler-Based Localization for
Lunar Rovers in Motion

KAILA M. Y. COIMBRA AND GRACE GAO

Thank you!

ION GNSS+ 2025 | Session B3: Future of Space, Lunar, and Extraterrestrial Navigation 1 Stanford UniVEI'Sity
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