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Autonomy for Future Lunar Missions
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Autonomy refers to a rover’s ability to perceive, decide, and act without human input 

• Enable scalable rover operations without 
real-time human oversight

• Extend access to challenging terrain, 
including permanently shadowed regions

• Lower operations burden on Earth-based 
teams to reduce cost and increase resilience

Autonomy is essential for sustained lunar surface activity

Credit: NASA



Challenges of Lunar Surface Autonomy
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Lighting and Shadows

• High contrast
• Hard shadows
• Dynamic conditions

Lack of Features

• Uniform, textureless 
terrain

• Sparse landmarks for 
localization

Limited Sensing and Compute

• Vision over LiDAR 
• Low-power embedded 

processors
• Power constraints

GNSS Denied

• No reliable global 
localization→ Optical Navigation

Traditional visual SLAM methods (e.g., ORB-SLAM, Kimera-VIO) 
struggle under these conditions



The Lunar Autonomy Challenge
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Credit: Lunar Autonomy Challenge



• Objective: map 27 m×27 m region of terrain in a 180×180 grid (15 cm cell resolution)

• Geometric map: elevation per cell. Score based on % of cells mapped within 5 cm error

• Rock map: binary rock presence per cell. Evaluated with F1 score (precision and recall)

• Rover: 

▪ Sensors: 8 cameras, IMU 

▪ Linear and angular velocity control

Challenge Overview
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Credit: Lunar Autonomy Challenge



• Approach

▪ Perception

▪ SLAM

▪ Planning

• Results

• Conclusion

Outline
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Key Contributions

Trajectory Design for Loop 
Closure and Coverage

Lightweight Vision-Only 
Simultaneous Localization 

and Mapping (SLAM)
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Learning-based Perception 
under Harsh Conditions



Autonomy Stack
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Sensor Inputs
Scoring Maps

Control Commands

SLAM Backend

Planning

SLAM Frontend
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SLAM Frontend
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Semantic 
Segmentation

Front stereo images

Back stereo images

Semantic masks
Rock detections

Odometry

Tracked points

Rock Detection

Feature Tracking & Visual Odometry

Stereo Matching

Frame-to-Frame Matching

Feature Extraction

PnP



• Model: Unet++ [1]  
▪ Convolutional Neural Network (CNN)

Semantic Segmentation
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Skip connections

Encoder Decoder

• Finetuned on ground-truth semantic 
masks

• Outperformed newer transformer-based 
methods in speed and accuracy

[1] Zhou et al., ML-CDS 2018



In addition to left-right stereo matching, 
we can also match features across:

1. consecutive frames (feature tracking, 
motion estimation)

2. non-consecutive frames (loop closure)

Feature Extraction and Matching

12 [2] DeTone et al., CVPR 2018  [3] Lindenberger et al., ICCV 2023

Feature Extraction: 

SuperPoint [2]

• CNN-based keypoint detector and descriptor

• Detects repeatable and distinctive 2D features 
under varied lighting and texture

Feature Matching: 
LightGlue [3]

• Transformer-based feature matcher

• Robust to large viewpoint and 
appearance changes

Stereo matching 
gives depth

Left Right Detected keypoints Matches



Features matched across frames via LightGlue matching 

Feature Tracking
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(green = tracked, red = newly initialized)



Stereo Visual Odometry 
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previous

current

Left Right

Estimate motion between frames

1. Stereo matching

(𝑢, 𝑣)

(𝑥, 𝑦, 𝑧)

Geiger et al., IV 2011



Stereo Visual Odometry
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previous

current

Left

Estimate motion between frames

1. Stereo matching
2. Frame-to-frame 

matching (𝑢, 𝑣)

(𝑥, 𝑦, 𝑧)

(𝑢, 𝑣)

Geiger et al., IV 2011



Stereo Visual Odometry 
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previous

current

Left

➢ Current camera pose in 
the frame of previous 

1. Stereo matching
2. Frame-to-frame 

matching
3. Perspective-n-Point (PnP)

𝐗𝑖 = (𝑥, 𝑦, 𝑧)

𝐱𝑖 = (𝑢, 𝑣)

min
𝐑,𝐭

෍

𝑖

𝜋 𝐑𝐗𝑖 + 𝐭 − 𝐱𝑖
2

Solve for pose 𝐑, 𝐭  that 
minimizes reprojection error 

Estimate motion between frames

*Use RANSAC for outlier rejection 

Geiger et al., IV 2011

𝐑, 𝐭



Autonomy Stack
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Sensor Inputs
Scoring Maps

Control Commands
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Tracked points

SLAM Backend
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Trajectory

Semantic 
point cloud

Pose Graph

…

Keyframes
Loop Closure

Map Points

Odometry

Images/extracted 
features



Pose Graph
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𝐓𝑗

𝐓𝑖

𝐓𝑖+1

Odometry: (𝐓𝑖 , 𝐓𝑖+1)

Loop closure: (𝐓𝑖, 𝐓𝑗)

min
{𝐓𝑖}

෍

𝑖,𝑗 ∈ℰ

𝐓𝑖
𝑗

− 𝐓𝑖
−1𝐓𝑗

2

Edges (factors):

Nodes: 3D pose - 𝐓𝑖 ∈ SE(3)

Implemented with GTSAM [4]

Graph of 3D poses (position and orientation) connected by spatial constraints

Optimization:

[4] Dellaert et al., Georgia Institute of Technology  2012

consecutive poses

non-consecutive poses

edge set
all poses

Minimize residuals of 
measured vs. expected 

relative poses

measured expected



Autonomy Stack
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Control Commands

SLAM Backend

Planning

SLAM Frontend



Planning Modules
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Path Design Motion Planning

linear velocity

angular velocity

waypoints
initial pose

Rock detections Current pose



High-level Path Design
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• Grid pattern to maximize coverage while incentivizing loop closure 

Lander

Rover



• Sample candidate arcs parameterized by angular velocity

• Score and sort arcs based on distance to waypoint

• Select safe arc which does not intersect with rocks

Motion Planning
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Plan safe path to current waypoint while avoiding rocks

➢ Triggers backup maneuver if stuck or no safe arcs found



Autonomy Stack
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Sensor Inputs
Scoring Maps

Control Commands

SLAM Backend

Planning



• Approach

▪ Perception

▪ SLAM

▪ Planning

• Results

• Conclusion

Outline
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Simulator Recording
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64x



Rerun Visualization
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10x

Loop closures

Front left camera

Motion Planning

Trajectory and semantic point cloud map

XYZ position error over time

(m)

Light blue: estimated
Black: ground truth

Gray: ground
Red: rocks

Gold: lander



Competition Results
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Local Testing
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Preset
Trajectory 
RMSE (m)

Geometric 
Map Score
(max 300)

Rocks 
Map Score
(max 300)

Total Score
(max 1000)

1 0.0628 195.7 150.4 746.1

1 0.0671 221.0 144.7 765.7

1 0.0434 269.6 153.6 823.3

1 0.0510 262.8 151.8 814.6

1 0.1078 194.0 101.8 695.8

2 0.0379 272.3 155.2 827.5

3 0.0605 200.8 146.1 746.9

4 0.0612 190.2 154.8 745.0

5 0.0510 224.7 150.6 775.3

Performance over different rock distributions (presets), initial rover locations

Geometric map Rock map

90% of cells mapped 
within 5 cm error 

Our SLAM consistently achieves cm-level localization and mapping 
with vision only

Motion planning reliably avoids hazards and enables full mission 
completion under varying conditions



• Develop a full autonomy stack for a lunar surface mission with:

▪ Learning-based perception under harsh conditions

▪ Lightweight vision-only pose graph SLAM

▪ Trajectory design for loop closure and coverage

• Extensive testing and validation in high fidelity simulation

• Placed 1st in the competition

Contributions
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Contributions

Trajectory Design for Loop 
Closure and Coverage

Lightweight Vision-Only 
Simultaneous Localization 

and Mapping (SLAM)
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Learning-based Perception 
under Harsh Conditions
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Related Presentations from the NAV Lab
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Thank you!

Questions?
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Adam Dai  •  addai@stanford.edu 

Full Stack Navigation, Mapping, and Planning for 
the Lunar Autonomy Challenge

website code

mailto:addai@stanford.edu


Given the semantic point cloud from SLAM, how to produce the final geometric and rock maps?

Map Generation
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Bin points into 2D grid cells
Geometric Map

Rock Map

(not to scale)

𝑃 rock =
# rock points

# total points

For each cell:

𝑧cell = median(𝑧𝑖)

𝑜cell = ቊ
1 𝑃 rock ≥ 0.5

0 𝑃 rock < 0.5

𝑧𝑖: height of points in the cell

Robustness to outliers and noisy detections



Final Scoring Maps
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Geometric
(score: 269.6)

Rock
(score: 153.6)



Loop Closure
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Detect similar viewpoints and add relative pose constraints to correct drift 

𝐓𝑗

Proximity check:
• Distance: 𝐿2 norm
• Angle: rotation matrix error

Relative pose estimation: 
• Stereo triangulation and PnP (same as VO)

Loop closure factor added to graph and graph 
is re-optimized

𝐓𝑖



Rerun Visualization (static)
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Backup Maneuver
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ORB-SLAM3
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Competition Spiral
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SuperPoint and LightGlue
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