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.. NAV
Autonomy for Future Lunar Missions LAB

Autonomy refers to a rover’s ability to perceive, decide, and act without human input

Enable scalable rover operations without
real-time human oversight

@ Extend access to challenging terrain, =
including permanently shadowed regions

Lower operations burden on Earth-based
teams to reduce cost and increase resilience

Credit: NASA

Autonomy is essential for sustained lunar surface activity
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Challenges of Lunar Surface Autonomy

Limited Sensing and Compute GNSS Denied

* No reliable global
localization
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The Lunar Autonomy Challenge LAB

Credit: Lunar Autonomy Challenge
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Challenge Overview

Objective: map 27 m X 27 m region of terrainin a 180 X 180 grid (15 cm cell resolution)

. elevation per cell. Score based on % of cells mapped within 5 cm error

Rock map: binary rock presence per cell. Evaluated with F1 score (precision and recall)

Rover: -
= Sensors: 8 cameras, IMU T —
= Linearand angular velocity control gl o

b

Credit: Lunar Autonomy Challenge
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Key Contributions
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SLAM Frontend LNA\B{

// Feature Tracking & Visual Odometry \\
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. . NAV
Semantic Segmentation LAB

Model: Unet++[1] RGB round truth B Predictions

= Convolutional Neural Network (CNN)

>
If{ﬁ'h’! ufflf?“/ﬁ[/‘

rr*
i ¥
} If st . ,‘»-_.’1
‘.1_: __. 5 :_H:_.-
Encoder Decoder o et

* Finetuned on ground-truth semantic
NENS

* Outperformed newer transformer-based
methods in speed and accuracy

11 [1] Zhou et al., ML-CDS 2018 Stanford University



Feature Extraction and Matching LAB

Left Right Detected keypoints Matches

PR : . Stereo matching
Feature Extr.actlon. Feat.u re Matchlng. oives deth
SuperPoint 2 LightGlue 3!
*  CNN-based keypoint detector and descriptor « Transformer-based feature matcher
»  Detects repeatable and distinctive 2D features * Robust to large viewpoint and

under varied lighting and texture appearance changes T L
e TR L

In addition to left-right stereo matching,
we can also match features across:

1. consecutive frames (feature tracking,
motion estimation)

2. non-consecutive frames (loop closure)

12 [2] DeTone et al., CVPR 2018 [3] Lindenberger et al., /CCV 2023 Stanford University



Feature Tracking

Features matched across frames via LightGlue matching

(green=tracked, )
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Stereo Visual Odometry LAB

Estimate motion between frames L @ e T T

1. Stereo matching
previous

Left Right

14 Geiger et al., /2011 Stanford University



NAV

Stereo Visual Odometry LAB
Estimate motion between frames o e
R i
R e 7
1. Stereo matching
2. Frame-to-frame previous
matching '

current

15 Geiger et al., /2011 Stanford University



Stereo Visual Odometry LAB

previous

Estimate motion between frames

1. Stereo matching
2. Frame-to-frame

matching
3. Perspective-n-Point (PnP) /
» Current camera pose in i _
P A mlnzlln(R 40 —x,|2
the frame of previous / Rt £
current v / /
A A Solve for pose (R, t) that
qq . q minimizes reprojection error
(R t) *Use RANSAC for outlier rejection
)
Left
16 Geigeret al., /2011
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SLAM Backend
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NAV
Pose Graph LAB

Graph of 3D poses (position and orientation) connected by spatial constraints

Nodes: 3D pose - T; € SE(3)

L7 "'~
’ N Edges (factors):
! \ Odometry: (T;, Tj4+1) consecutive poses
\ \
'\‘\ I Loop closure: (T;, Tj) non-consecutive poses
Ti+1X}.Tf R Optimization:
S R measured  expected
T, b\ "~._ .- /. / ,
N min Z ||le — (Ti)_llel Minimize residuals of
\ {T;} 4L measured vs. expected
\ / (L) eg\ relative poses
\ _ all poses edge set

Implemented with GTSAM !

19 [4] Dellaert et al., Georgia Institute of Technology 2012 Stanford University
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Planning Modules

Rock detections

NAV
LAB
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Path De5|gn
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High-level Path Design
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Grid pattern to maximize coverage while incentivizing loop closure

./ Lander

Rover

NAV
LAB
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. . NAV
Motion Planning LAB

Plan safe path to current waypoint while avoiding rocks

« Sample candidate arcs parameterized by angular velocity
* Score and sort arcs based on distance to waypoint
* Select which does not intersect with 1

» Triggers backup maneuver if stuck or no safe arcs found

23 Stanford University



Autonomy Stack
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Simulator Recording
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NAV

Rerun Visualization LAB
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Competition Results

Lunar Pathfinders
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Local Testing LAB

Performance over different rock distributions (presets), initial rover locations

Trajectory Geometric TR Total Score

Map Score Map Score
RMSE(m) | |\ 12x300) | (max300) | (Max1000)

Preset Geometric map Rock map

Our SLAM consistently achieves cm-level localization and mapping L
with vision only TS
Motion planning reliably avoids hazards and enables full mission |, S
completion under varying conditions W

272.3 155.2
90% of cells mapped
200.8 146.1 within 5 cm error

190.2 154.8
224.7 150.6

o D W N P R R =
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Contributions

30

Develop a full autonomy stack for a lunar surface mission with:

= Learning-based perception under harsh conditions

= Lightweight vision-only pose graph SLAM

= Trajectory design for loop closure and coverage
Extensive testing and validation in high fidelity simulation

Placed 15tin the competition

NAV
LAB
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NAV

Contributions LAB
ﬁearning-based Perceptih ﬂightweight Vision-Only\ ﬁ rajectory Design for Looh
under Harsh Conditions Simultaneous Localization Closure and Coverage

and Mapping (SLAM)
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Related Presentations from the NAV Lab M‘é

Session F1: K. liyama et al., “Constellation Design and Staged Deployment for the
Lunar Navigation Satellite System.”

Session F1: G. Casadesus Vila et al., “Lunar Surface Station to Support Lunar
Positioning, Navigation, and Timing Services.”

Session B3: K. Coimbra et al., “Single-Satellite Doppler-Based Localization for
Lunar Rovers in Motion.”

33 Stanford University



Full Stack Navigation, Mapping, and Planning for A
the Lunar Autonomy Challenge

Thank you!

website code Adam Dai
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: NAV
Map Generation LAB

Given the semantic point cloud from SLAM, how to produce the final geometric and rock maps?

Geometric Map

Bin pointsinto 2D grid cells For each cell:

Zce)] = median(z;)

z;: height of pointsin the cell

# rock points

P k) =
(rock) # total points

A 1 P(rock) > 0.5
cell =10 P(rock) < 0.5

(nottoscale)

Robustness to outliers and noisy detections

35 Stanford University



Final Scoring Maps

3233
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NAV
Loop Closure LAB

Detect similar viewpoints and add relative pose constraints to correct drift

Proximity check:
* Distance: L, norm
* Angle: rotation matrix error

Relative pose estimation:
» Stereo triangulation and PnP (same as VO)

Loop closure factor added to graph and graph
\ is re-optimized

37 Stanford University



Rerun Visualization (static)

@3p

NAV
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Backup Maneuver

Figure 10: 2D trajectories from two different runs. In the right plot, multiple backup maneuvers were triggered as the planner disengaged
from local obstacles. Despite this, our SLAM maintains low localization error through the entire trajectory.

Stanford University



ORB-SLAM3 LAB

ORB-SLAM3-Multi: Current Frame
__|Follow Camera

Camera View
Top View

rishow Points

[TIShow KeyFrames
r_Show Graph

[TIShow Inertial Graph
AJLocalization Mode
riLoopclosure Mode

Reset
Stop

[Istep By Step

Step

[[JEnable Left Cam
[[JEnable Right Cam
[TJEnable Sideleft.Cam
[[JEnable Sideright -Cam
_JShow LBA opt | ’

Loading ORB Vocabulary. This could take a while...
Vocabulary loaded!

Initialization of Atlas from scratch
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Competition Spiral
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SuperPoint and LightGlue
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