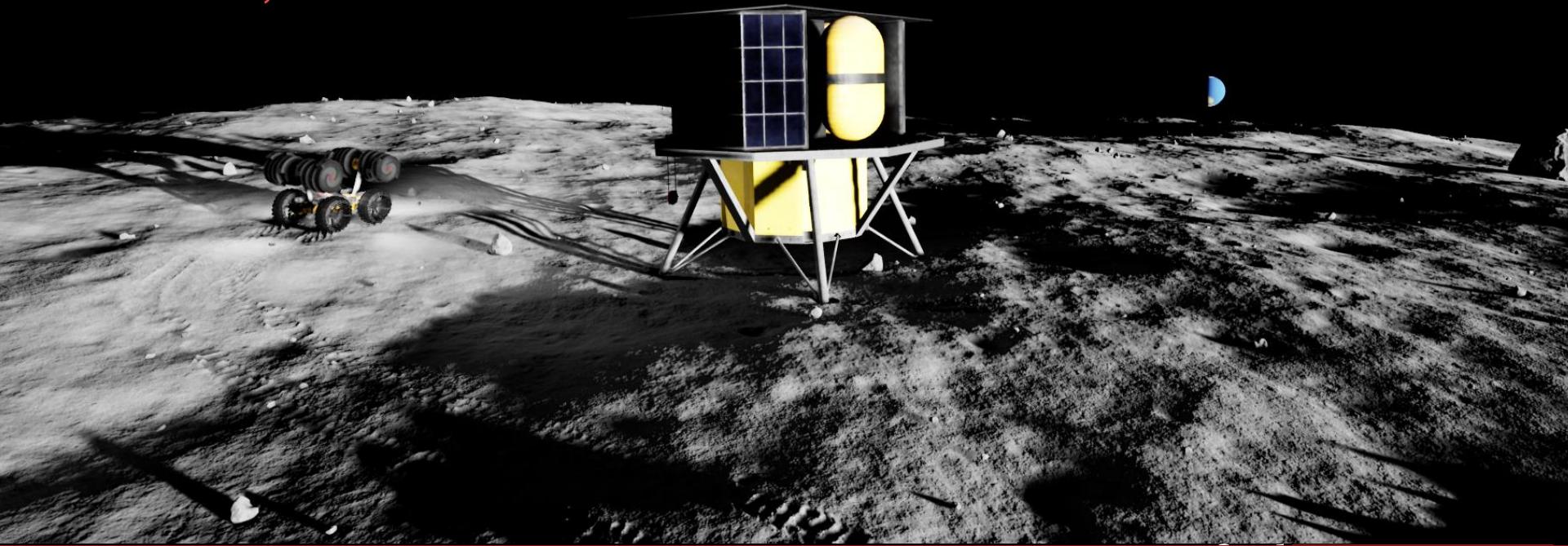


Full Stack Navigation, Mapping, and Planning for the Lunar Autonomy Challenge

ADAM DAI, ASTA WU, KEIDAI IIYAMA, GUILLEM CASADESUS VILA, KAILA COIMBRA,
THOMAS DENG, AND GRACE GAO



Autonomy for Future Lunar Missions

Autonomy refers to a rover's ability to perceive, decide, and act without human input

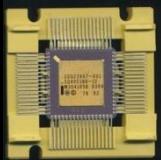
- **Enable scalable rover operations** without real-time human oversight
- **Extend access to challenging terrain**, including permanently shadowed regions
- **Lower operations burden on Earth-based teams** to reduce cost and increase resilience

Credit: NASA

Autonomy is essential for sustained lunar surface activity

Challenges of Lunar Surface Autonomy

Limited Sensing and Compute



- Vision
- Low-power
- Processor
- Power constraints

GNSS Denied

- No reliable global localization

→ Optical Navigation

Lighting and Shadows

Traditional visual SLAM methods (e.g., ORB-SLAM, Kimera-VIO) struggle under these conditions

Lack of Features

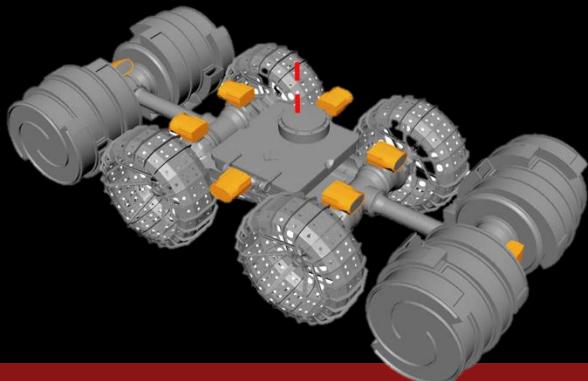
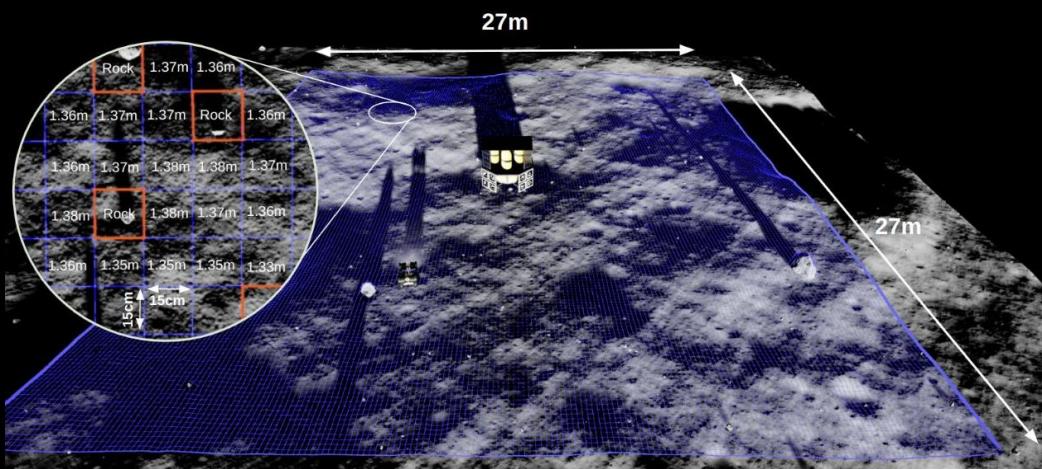
less
features

The Lunar Autonomy Challenge

Credit: Lunar Autonomy Challenge

Challenge Overview

- **Objective:** map $27\text{ m} \times 27\text{ m}$ region of terrain in a 180×180 grid (15 cm cell resolution)
- **Geometric map:** elevation per cell. Score based on % of cells mapped within 5 cm error
- **Rock map:** binary rock presence per cell. Evaluated with F1 score (precision and recall)
- **Rover:**
 - Sensors: 8 cameras, IMU
 - Linear and angular velocity control



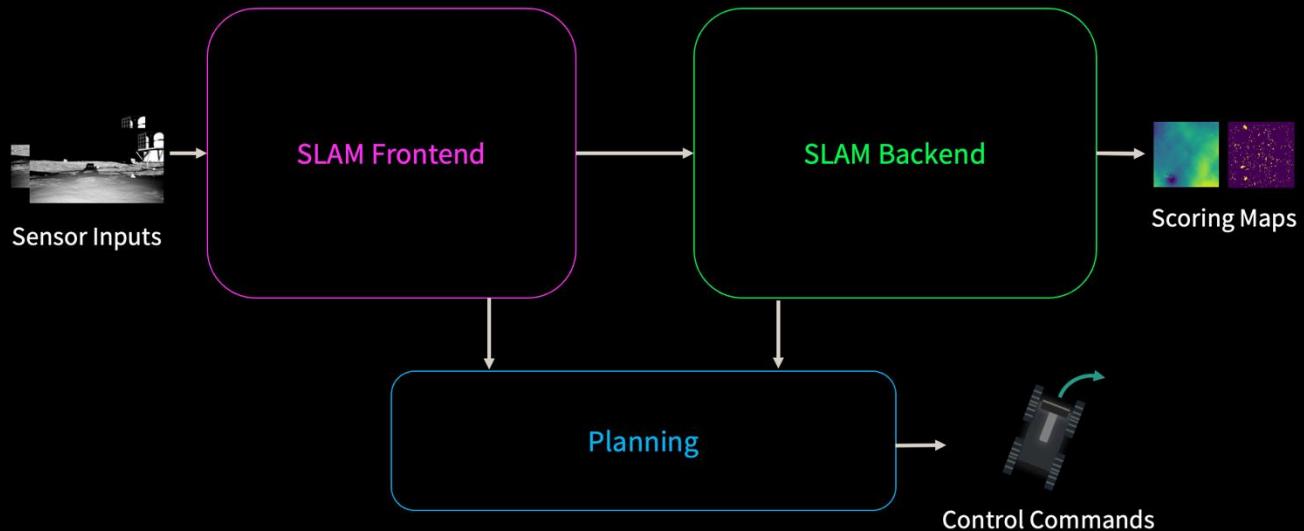
Credit: Lunar Autonomy Challenge

Outline

- Approach
 - Perception
 - SLAM
 - Planning
- Results
- Conclusion

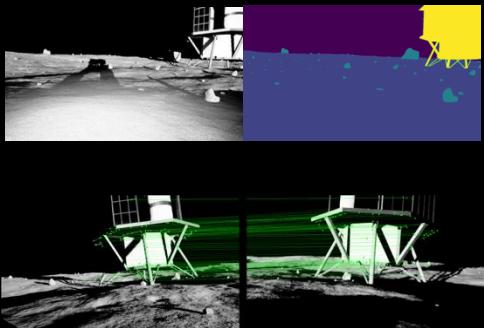
Outline

- **Approach**
 - Perception
 - SLAM
 - Planning
- Results
- Conclusion

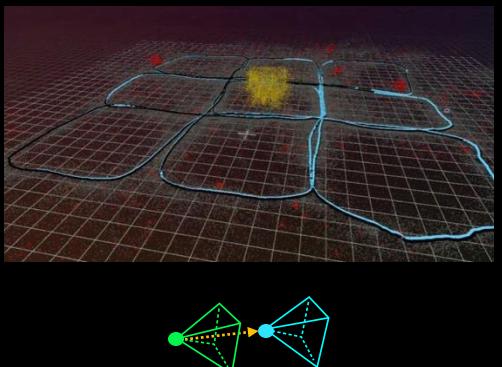


Key Contributions

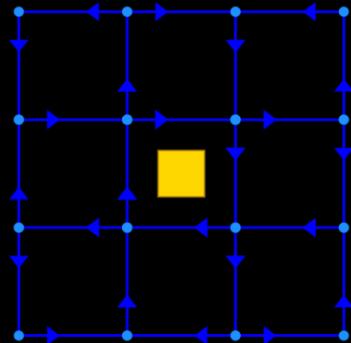
Learning-based Perception under Harsh Conditions



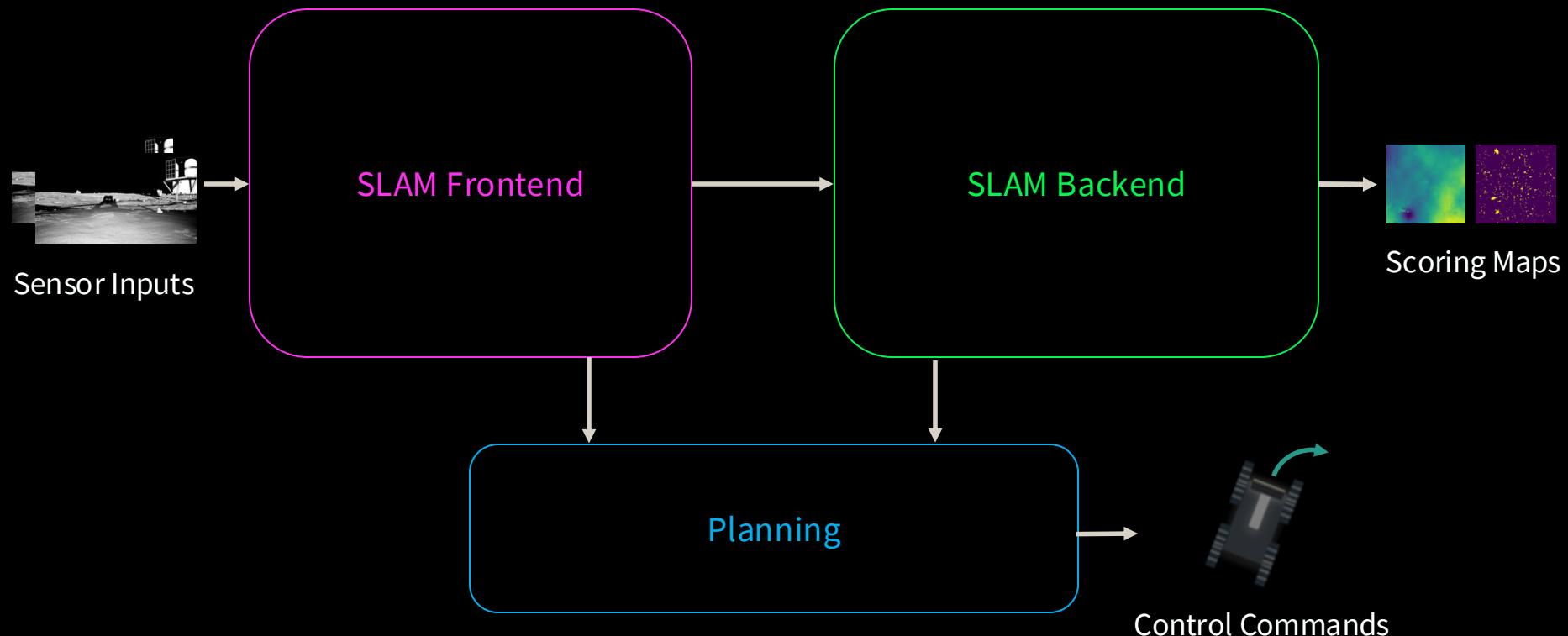
Lightweight Vision-Only Simultaneous Localization and Mapping (SLAM)



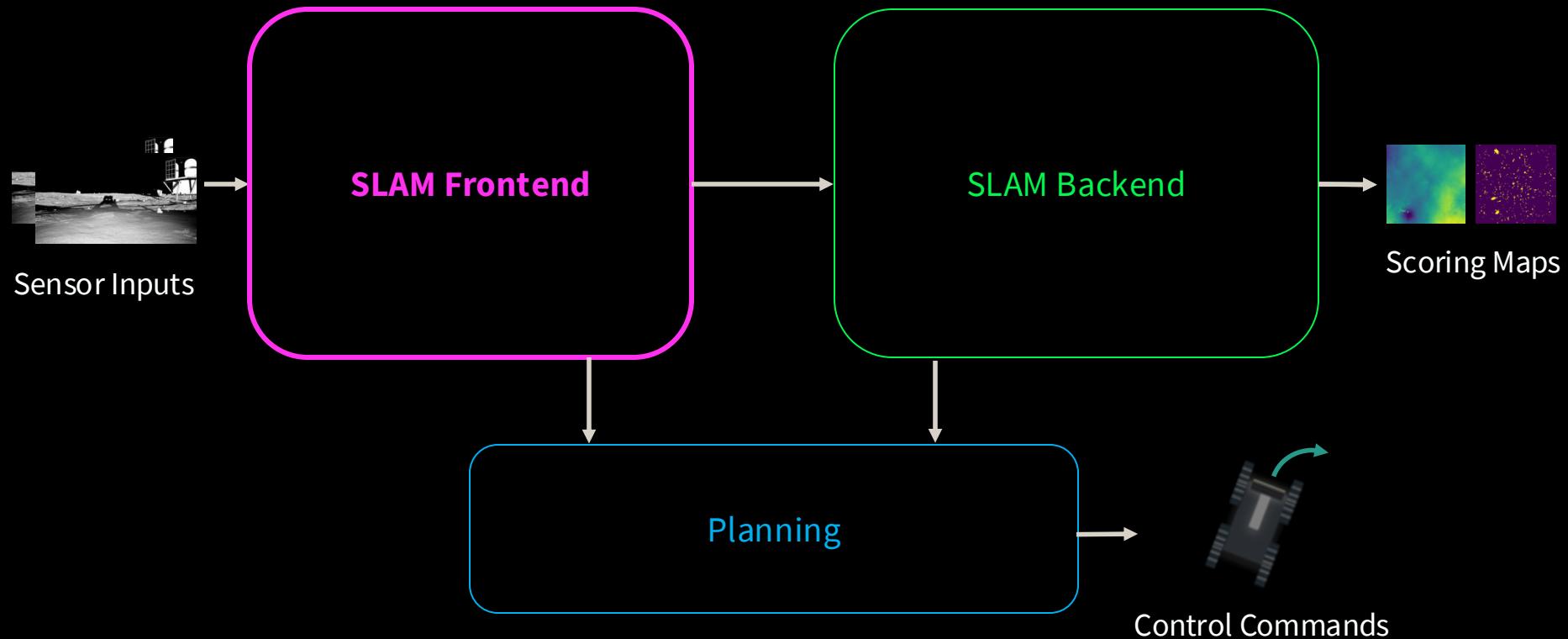
Trajectory Design for Loop Closure and Coverage



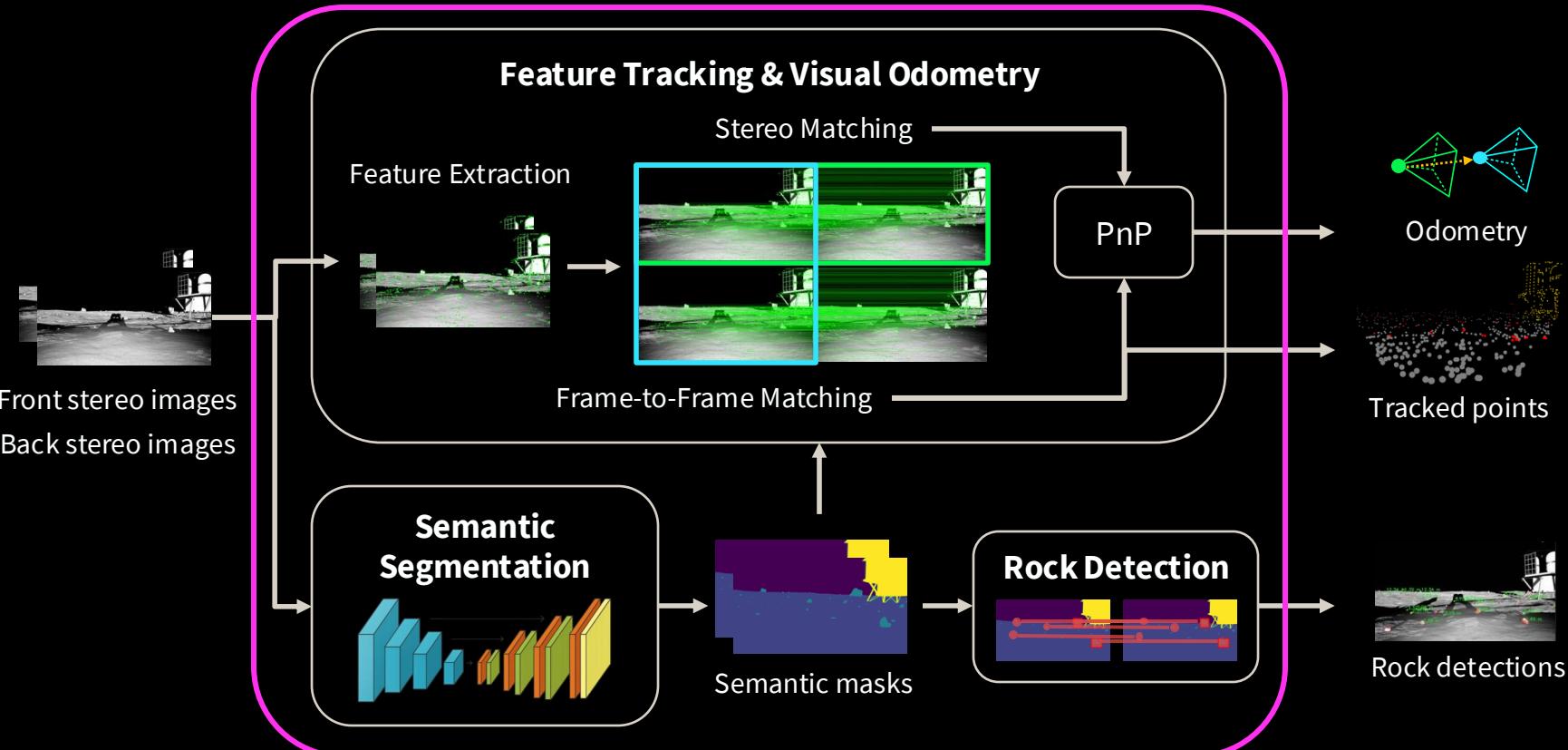
Autonomy Stack



Autonomy Stack

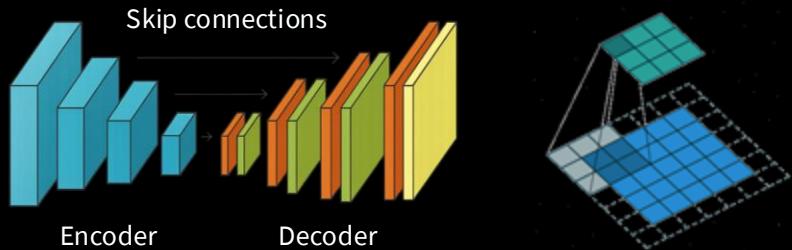


SLAM Frontend

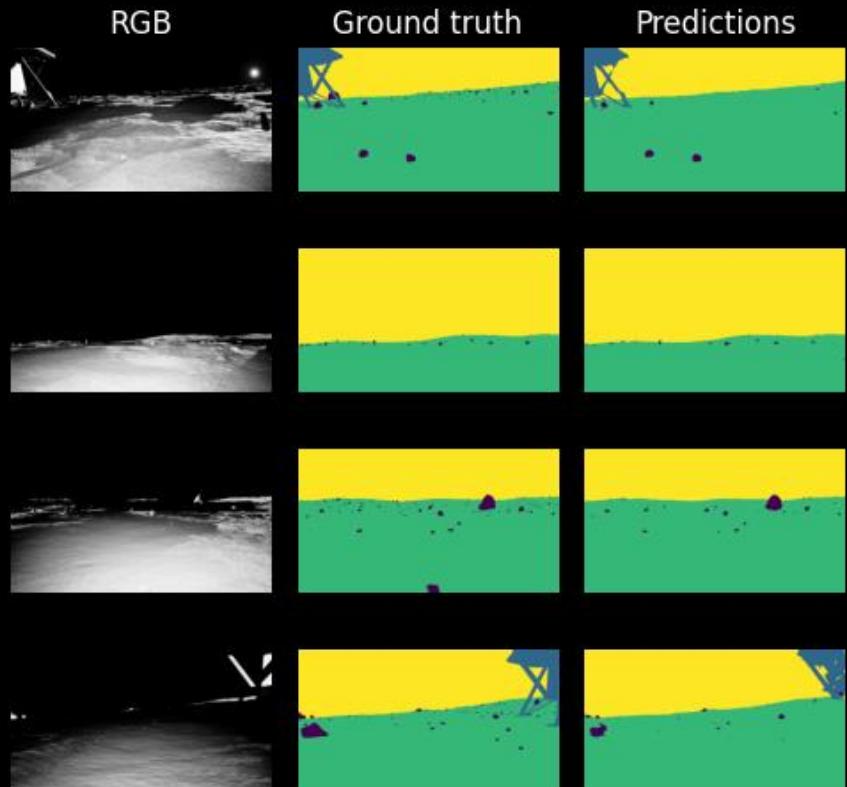


Semantic Segmentation

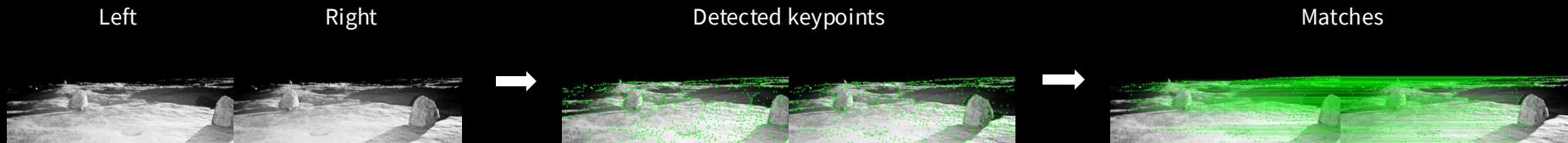
- Model: **Unet++** [1]
 - Convolutional Neural Network (CNN)



- Finetuned on ground-truth semantic masks
- Outperformed newer transformer-based methods in speed and accuracy



Feature Extraction and Matching



Feature Extraction: **SuperPoint**^[2]

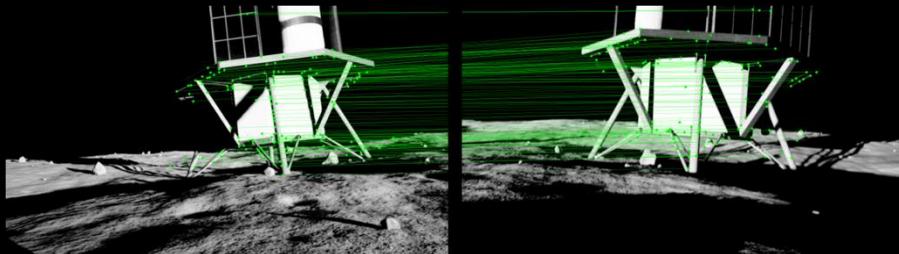
- *CNN-based keypoint detector and descriptor*
- *Detects repeatable and distinctive 2D features under varied lighting and texture*

Feature Matching: **LightGlue**^[3]

- *Transformer-based feature matcher*
- *Robust to large viewpoint and appearance changes*

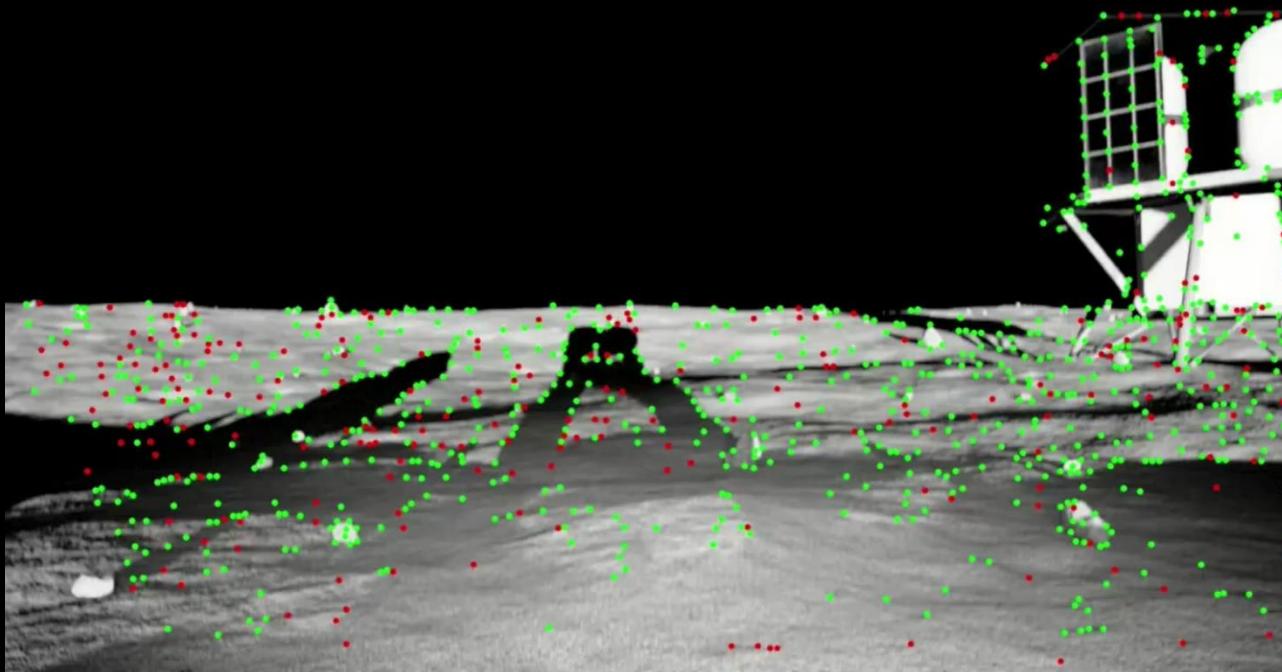
In addition to left-right stereo matching, we can also match features across:

1. consecutive frames (feature tracking, motion estimation)
2. non-consecutive frames (loop closure)



Feature Tracking

Features matched across frames via LightGlue matching
(green = tracked, red = newly initialized)

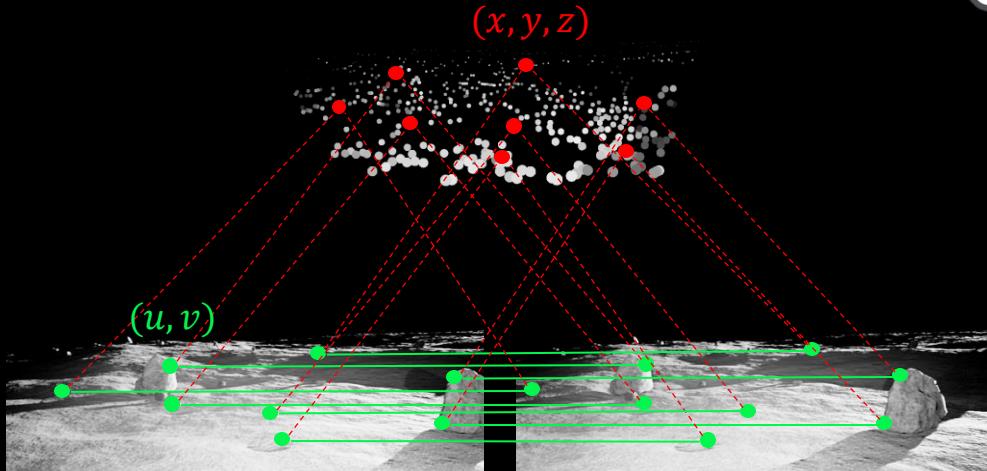
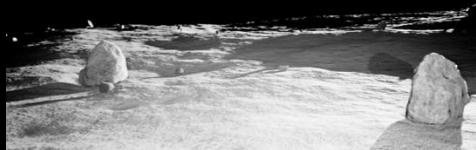


Stereo Visual Odometry

Estimate motion between frames

1. Stereo matching

previous



current

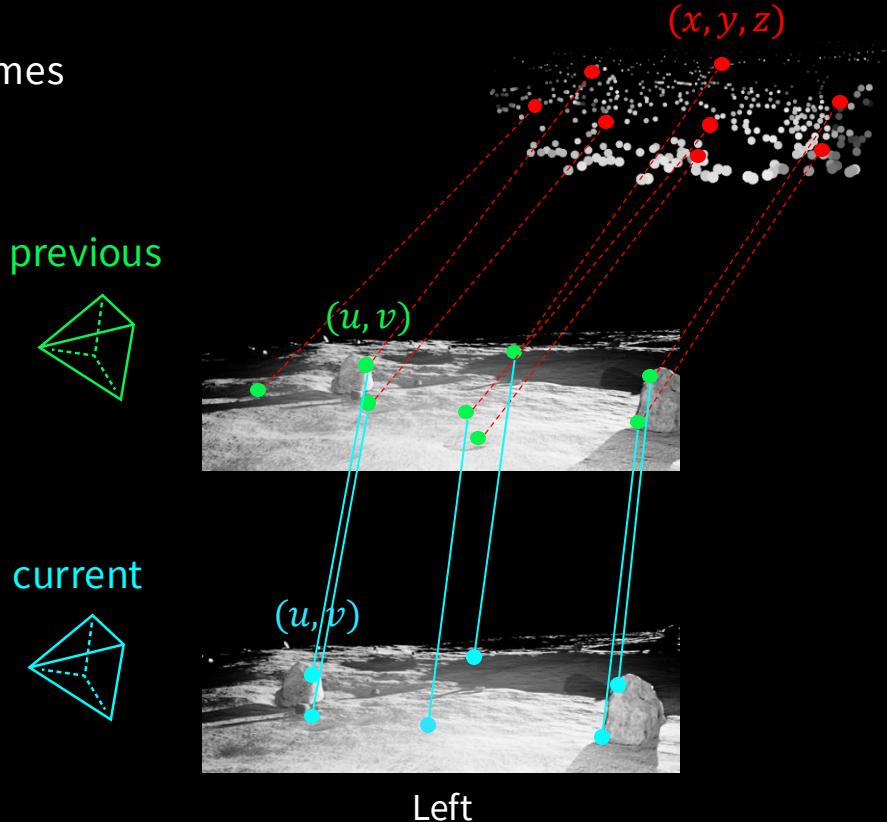
Left

Right

Stereo Visual Odometry

Estimate motion between frames

1. Stereo matching
2. **Frame-to-frame matching**

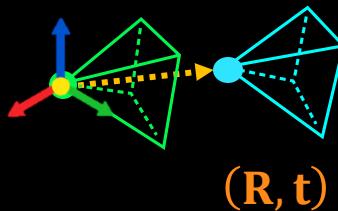
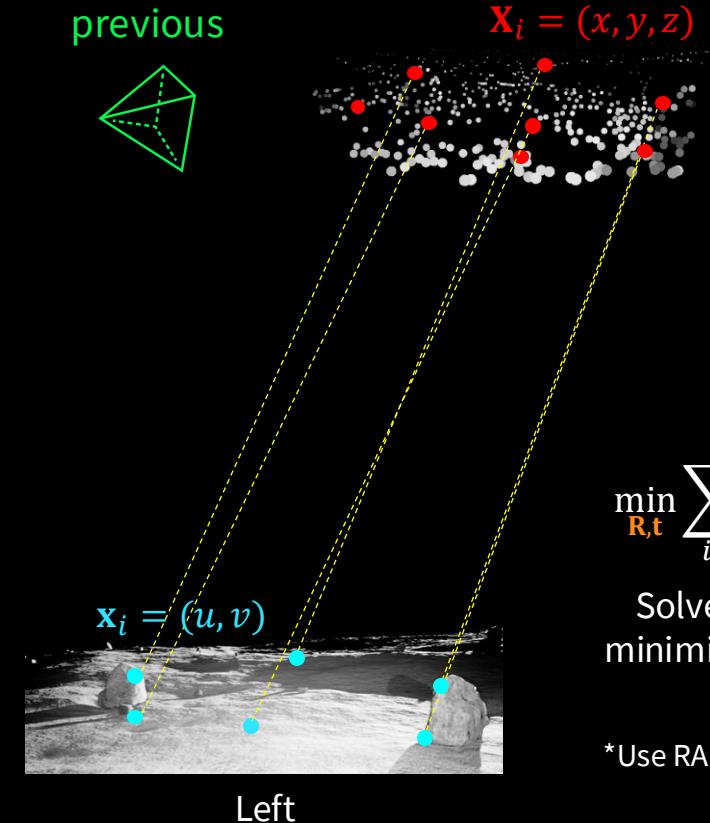


Stereo Visual Odometry

Estimate motion between frames

1. Stereo matching
2. Frame-to-frame matching
3. **Perspective-n-Point (PnP)**

➤ Current camera pose in the frame of previous

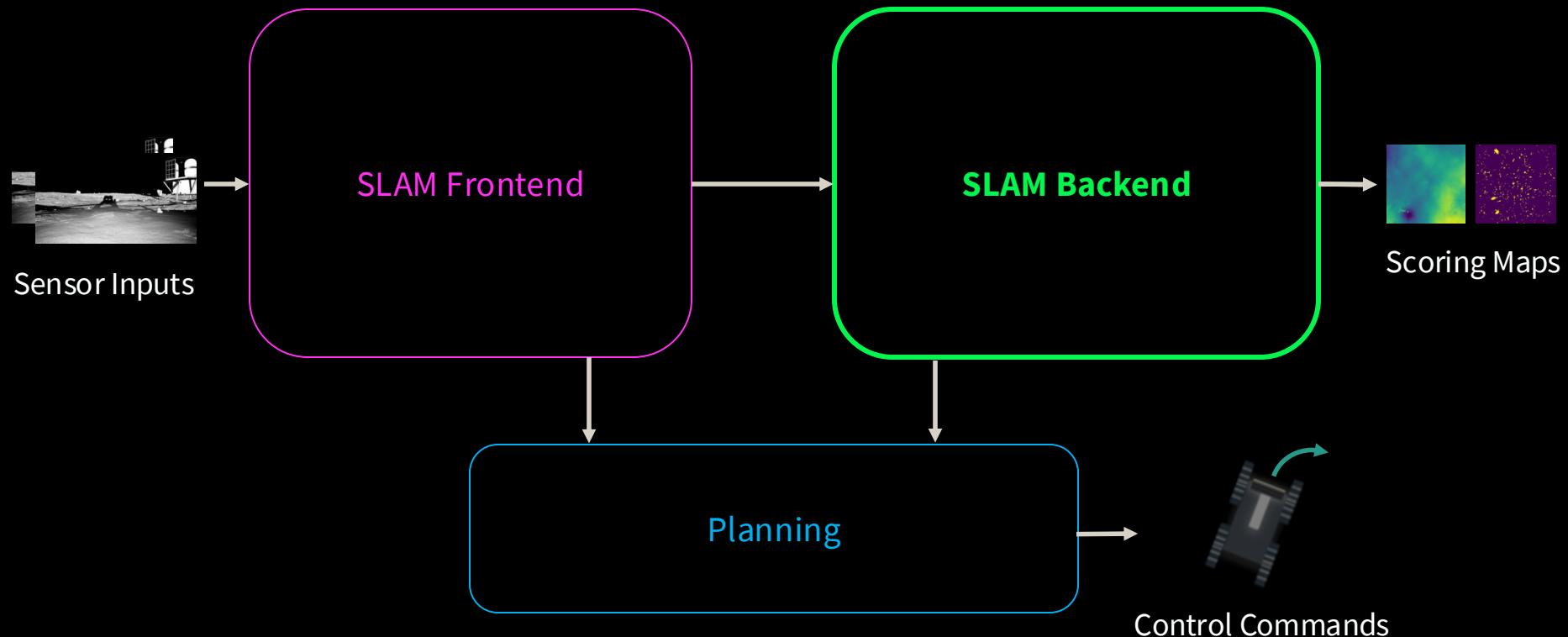


$$\min_{R, t} \sum_i \|\pi(RX_i + t) - x_i\|^2$$

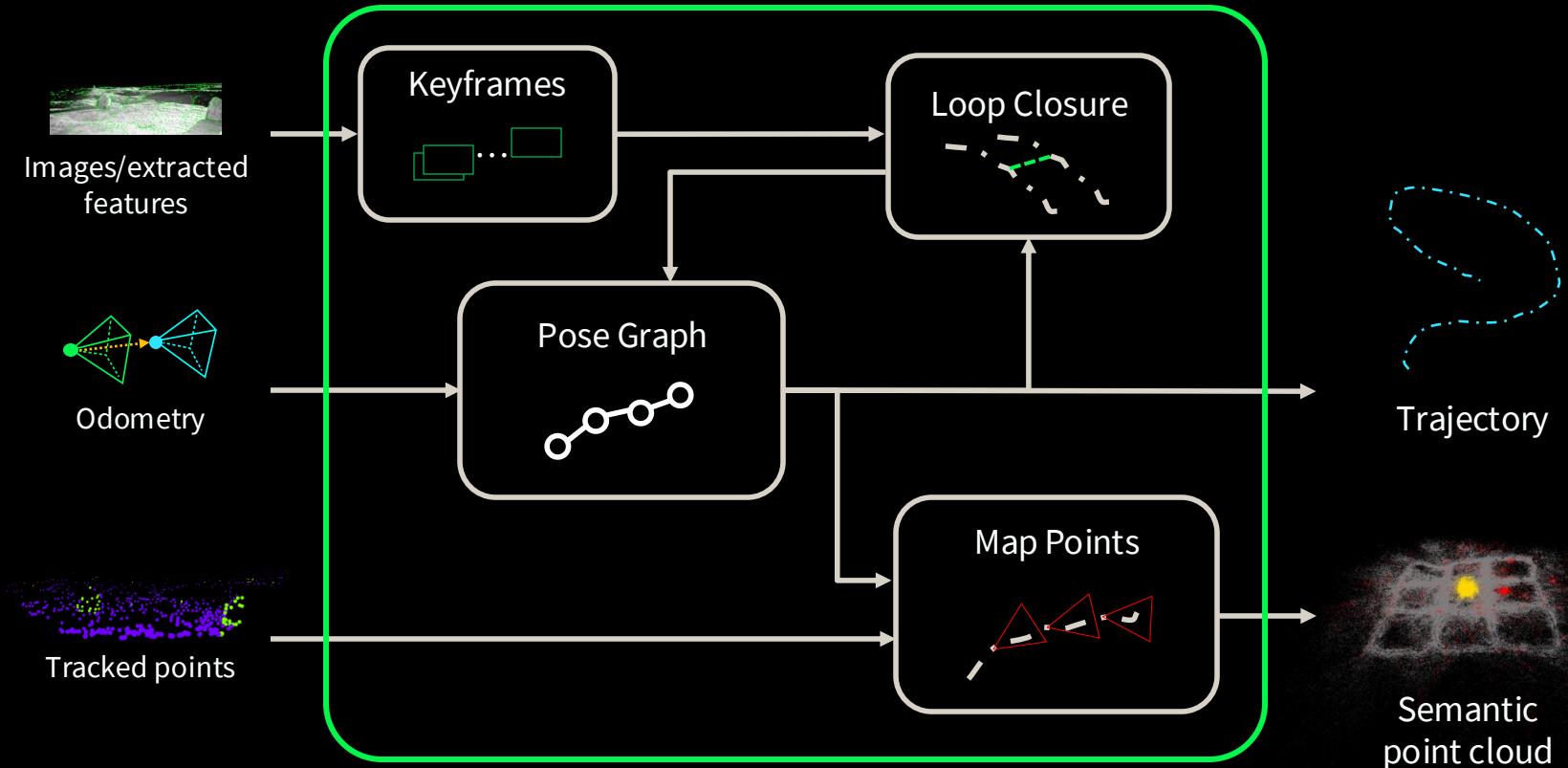
Solve for pose (R, t) that minimizes reprojection error

*Use RANSAC for outlier rejection

Autonomy Stack

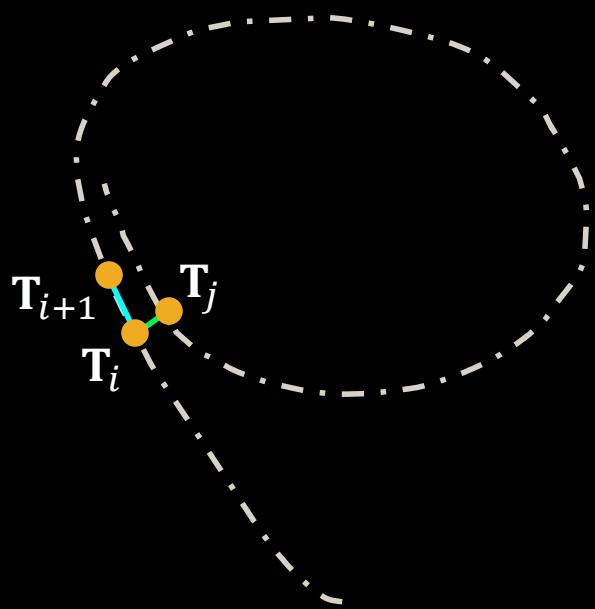


SLAM Backend



Pose Graph

Graph of 3D poses (position and orientation) connected by spatial constraints



Nodes: 3D pose - $\mathbf{T}_i \in \text{SE}(3)$

Edges (factors):

Odometry: $(\mathbf{T}_i, \mathbf{T}_{i+1})$ consecutive poses

Loop closure: $(\mathbf{T}_i, \mathbf{T}_j)$ non-consecutive poses

Optimization:

$$\min_{\{\mathbf{T}_i\}} \sum_{\substack{(i,j) \in \mathcal{E} \\ \text{all poses}}} \left\| \mathbf{T}_i^j - (\mathbf{T}_i)^{-1} \mathbf{T}_j \right\|^2$$

/ \

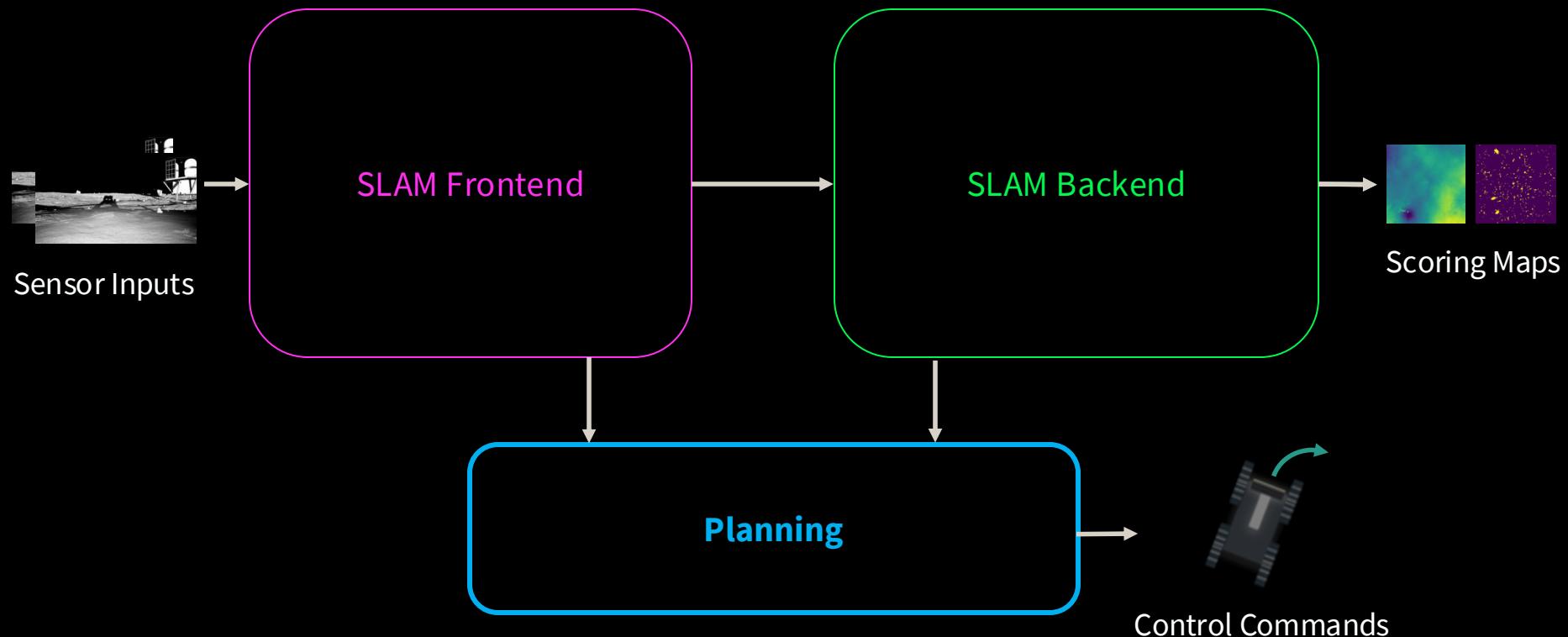
measured expected

edge set

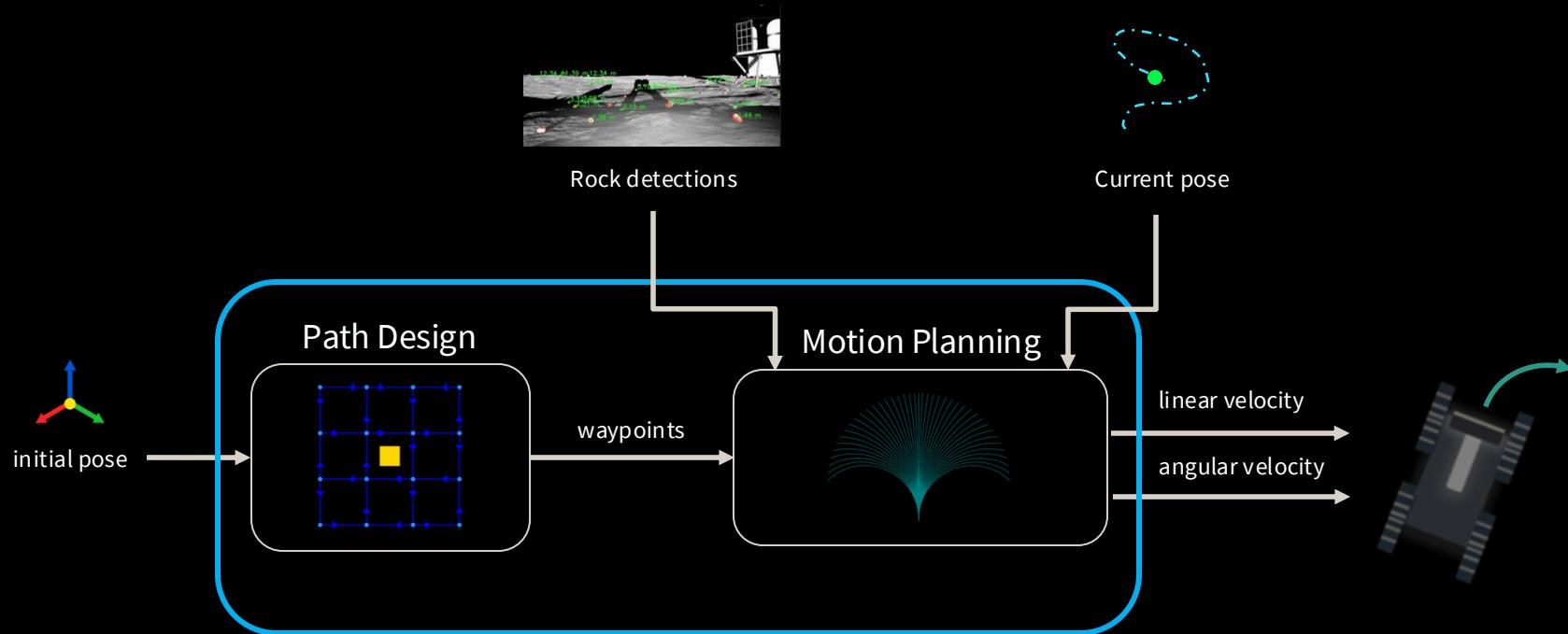
Minimize residuals of measured vs. expected relative poses

Implemented with GTSAM [4]

Autonomy Stack

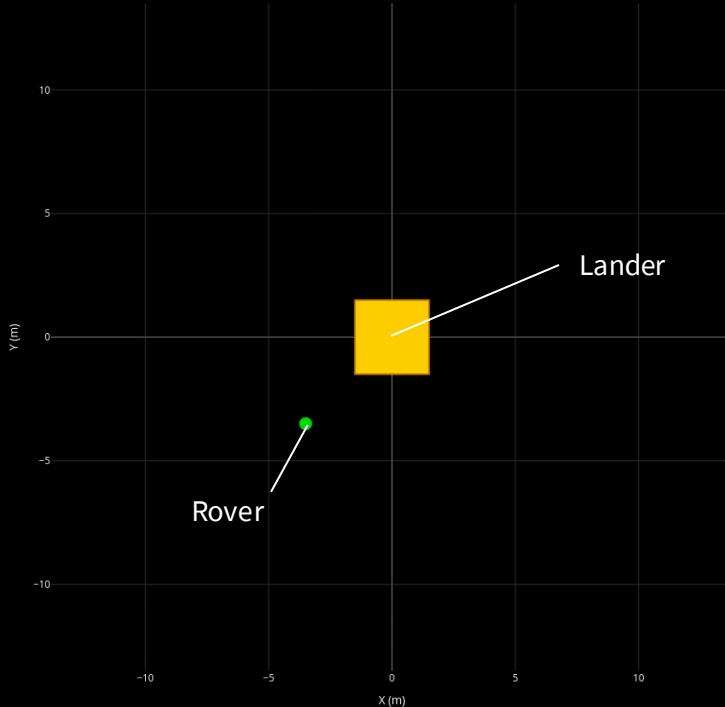


Planning Modules



High-level Path Design

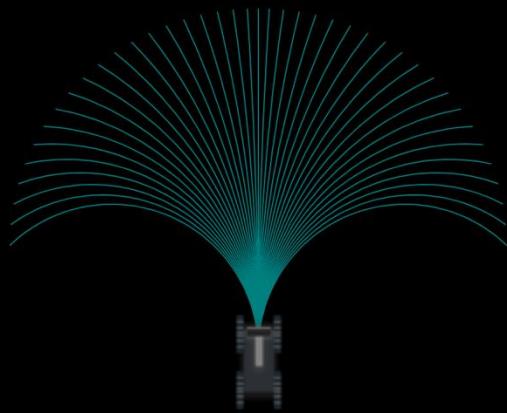
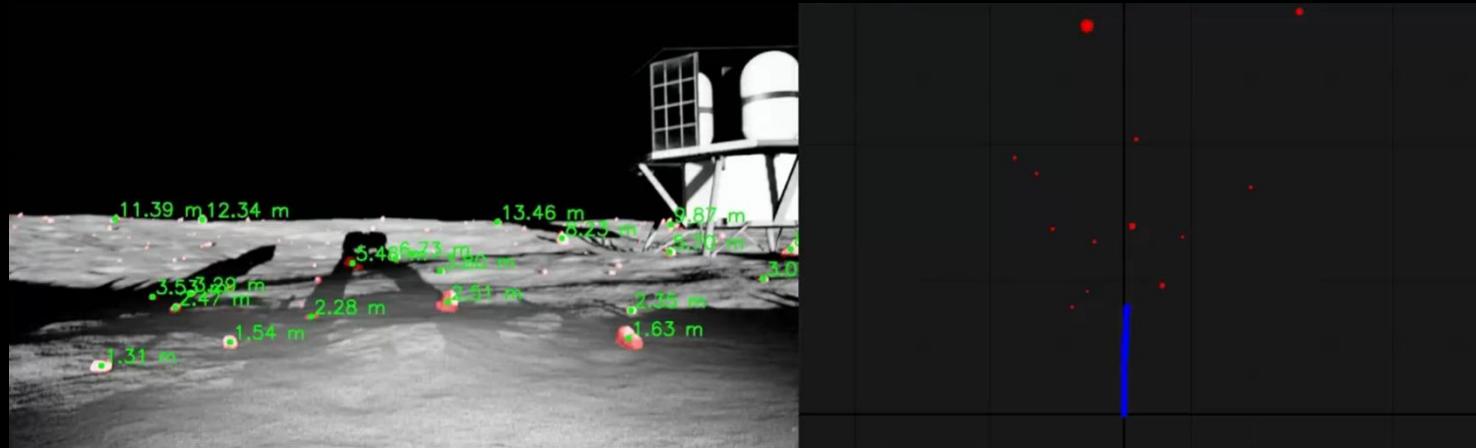
- Grid pattern to maximize coverage while incentivizing loop closure



Motion Planning

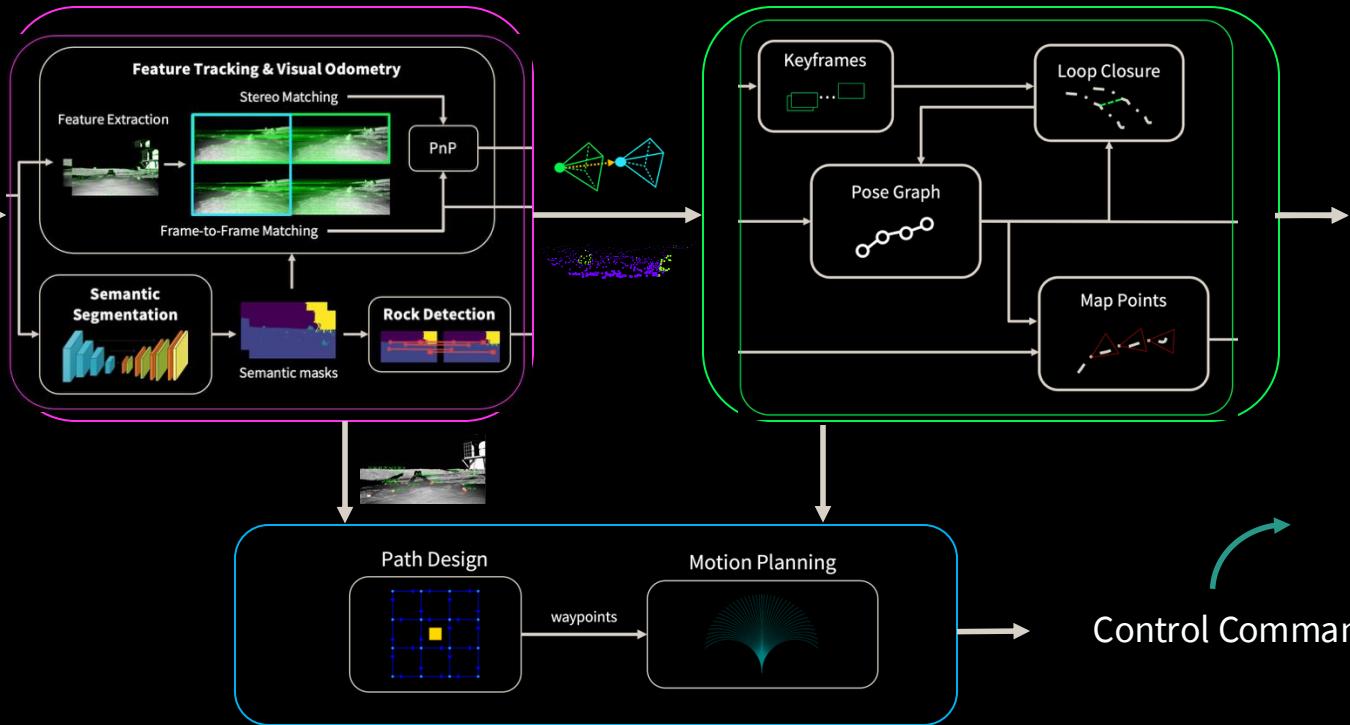
Plan safe path to current waypoint while avoiding rocks

- **Sample candidate arcs** parameterized by angular velocity
- **Score and sort arcs** based on distance to waypoint
- **Select safe arc** which does not intersect with **rocks**
 - Triggers backup maneuver if stuck or no safe arcs found



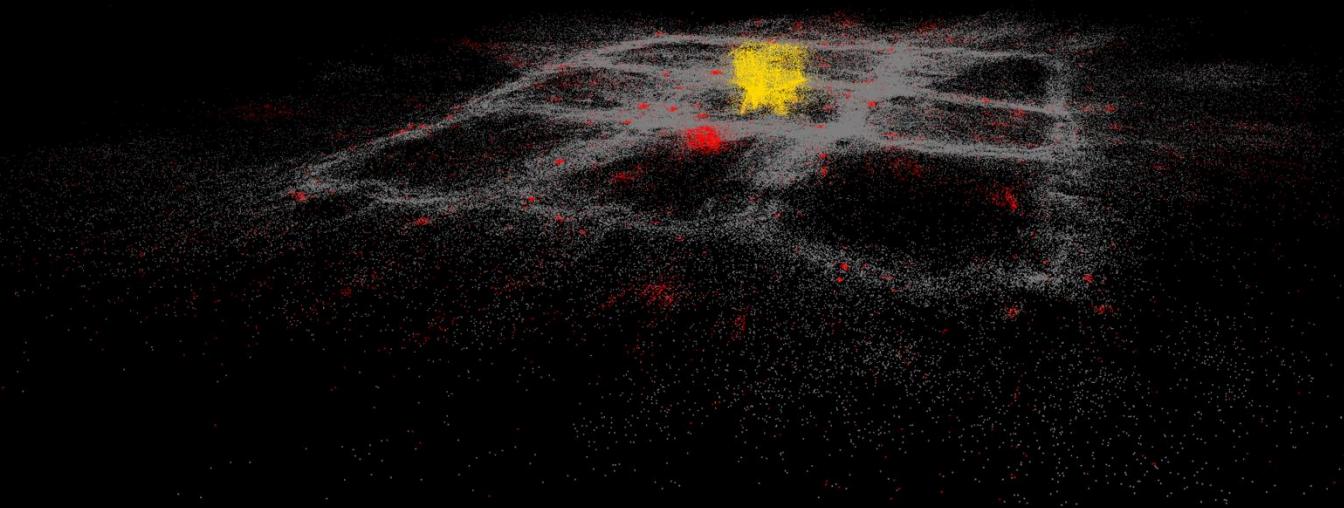
Autonomy Stack

Sensor Inputs



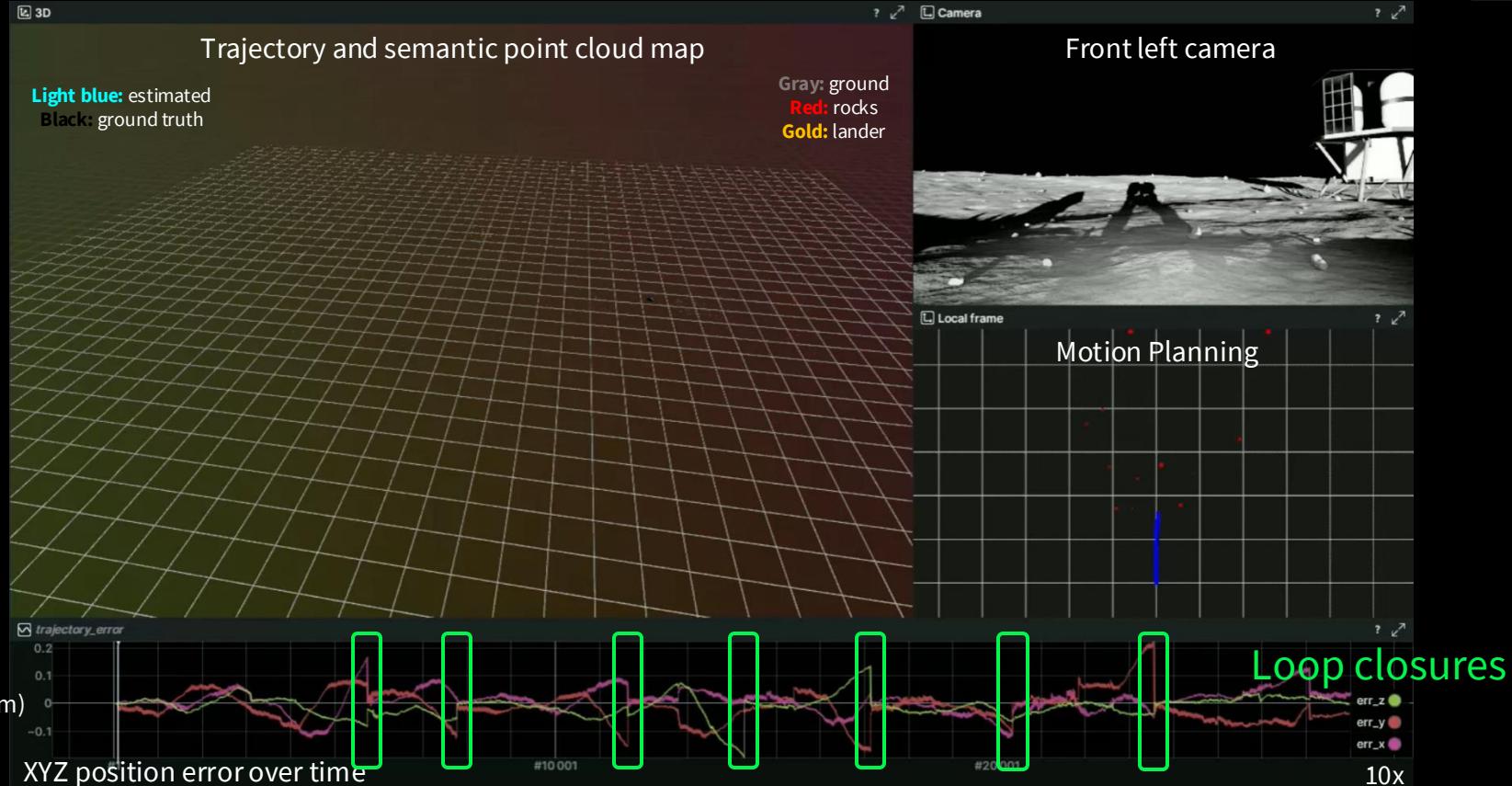
Outline

- Approach
 - Perception
 - SLAM
 - Planning
- **Results**
- Conclusion



Simulator Recording

Rerun Visualization



Competition Results

Rank	Participant team	Total score (↑)	Geometric Map score (↑)	Rocks Map score (↑)	Mapping Productivity score (↑)	Localization score (↑)
1	NAV Lab	571.800	111.400	60.400	250.000	150.000
2	MAPLE	544.400	91.700	52.700	250.000	150.000
3	Moonlight	543.700	96.900	46.800	250.000	150.000
4	LunatiX	440.100	24.400	15.600	250.000	150.000
5	AIWVU	438.500	22.000	16.500	250.000	150.000
6	Lunar Explorers	433.400	17.300	16.100	250.000	150.000
7	Lunar Pathfinders	420.400	4.800	15.700	250.000	150.000
8	Rose-Hulman Institute of Technology LAC	400.000	0.000	0.000	250.000	150.000

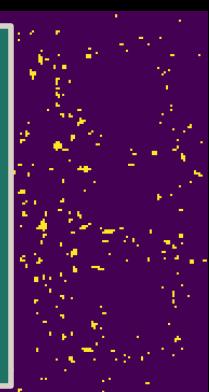
Local Testing

Performance over different rock distributions (presets), initial rover locations

Preset	Trajectory RMSE (m)	Geometric Map Score (max 300)	Rocks Map Score (max 300)	Total Score (max 1000)
1	0.0379	272.3	155.2	827.5
1	0.0605	200.8	146.1	746.9
1	0.0612	190.2	154.8	745.0
1	0.0510	224.7	150.6	775.3

Geometric map

Rock map



Our SLAM consistently achieves cm-level localization and mapping with vision only

Motion planning reliably avoids hazards and enables full mission completion under varying conditions

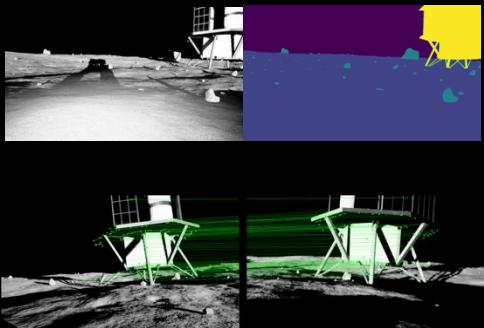
90% of cells mapped within 5 cm error

Contributions

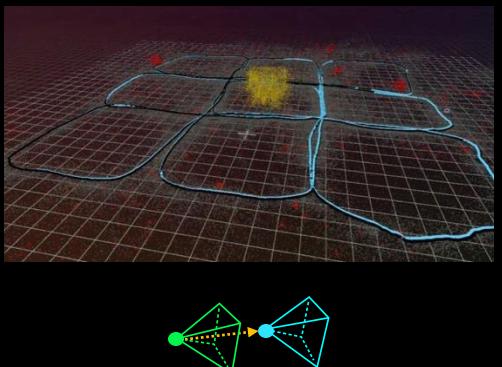
- Develop a full autonomy stack for a lunar surface mission with:
 - Learning-based perception under harsh conditions
 - Lightweight vision-only pose graph SLAM
 - Trajectory design for loop closure and coverage
- Extensive testing and validation in high fidelity simulation
- Placed 1st in the competition

Contributions

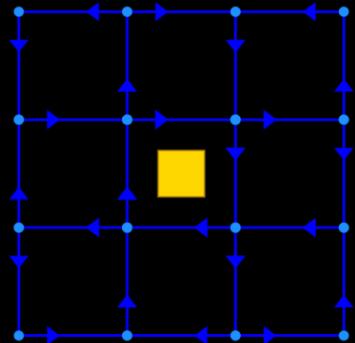
Learning-based Perception under Harsh Conditions



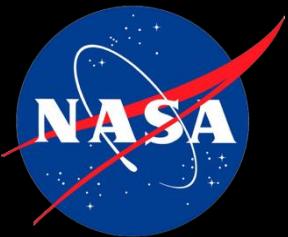
Lightweight Vision-Only Simultaneous Localization and Mapping (**SLAM**)



Trajectory Design for Loop Closure and Coverage



Acknowledgements



CATERPILLAR®

 JOHNS HOPKINS
APPLIED PHYSICS LABORATORY

EMBODIED AI
FOUNDATION

Related Presentations from the NAV Lab

Session F1: K. liyama et al., “Constellation Design and Staged Deployment for the Lunar Navigation Satellite System.”

Session F1: G. Casadesus Vila et al., “Lunar Surface Station to Support Lunar Positioning, Navigation, and Timing Services.”

Session B3: K. Coimbra et al., “Single-Satellite Doppler-Based Localization for Lunar Rovers in Motion.”

Full Stack Navigation, Mapping, and Planning for the Lunar Autonomy Challenge

Thank you!

Questions?

website

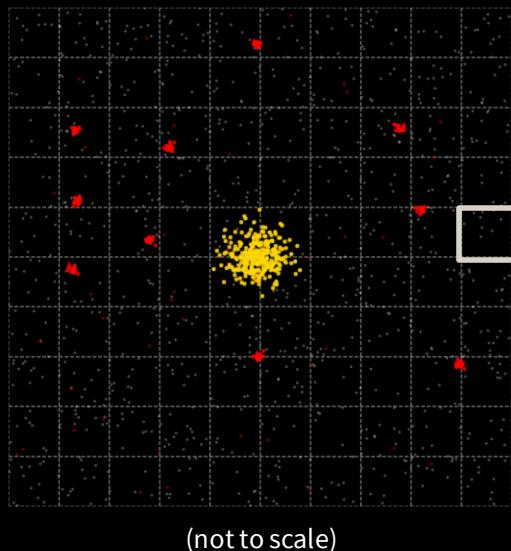
code

Adam Dai • addai@stanford.edu

Map Generation

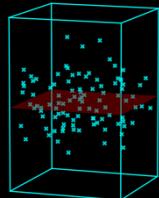
Given the semantic point cloud from SLAM, how to produce the final geometric and rock maps?

Bin points into 2D grid cells



For each cell:

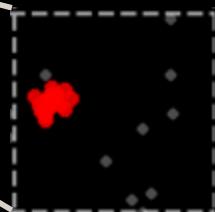
Geometric Map



$$z_{\text{cell}} = \text{median}(z_t)$$

z_t : height of points in the cell

Rock Map

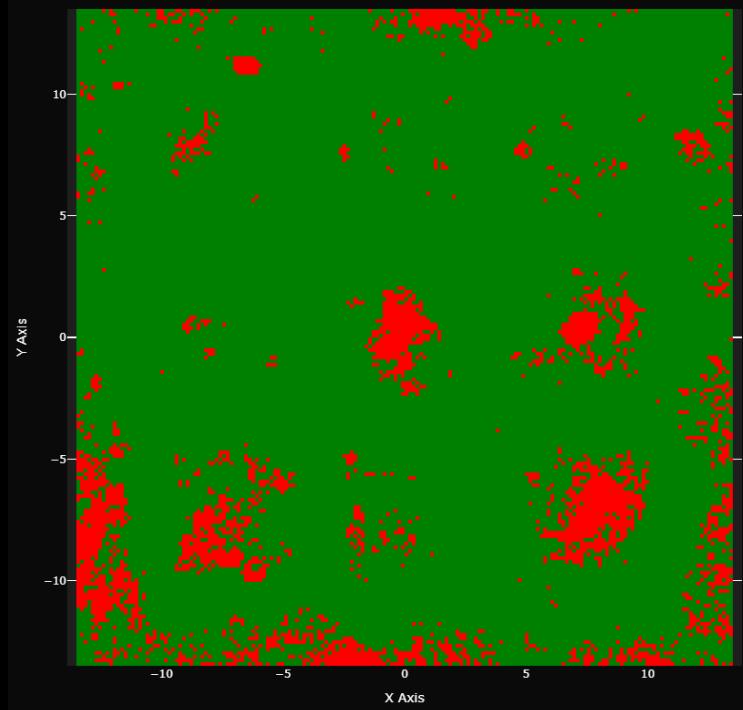


$$P(\text{rock}) = \frac{\# \text{ rock points}}{\# \text{ total points}}$$

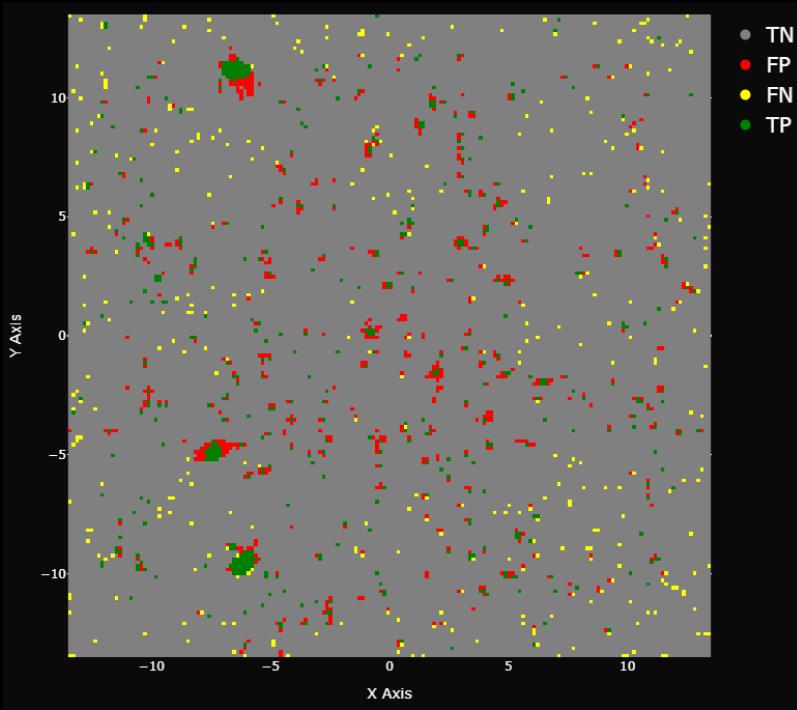
$$o_{\text{cell}} = \begin{cases} 1 & P(\text{rock}) \geq 0.5 \\ 0 & P(\text{rock}) < 0.5 \end{cases}$$

Robustness to outliers and noisy detections

Final Scoring Maps



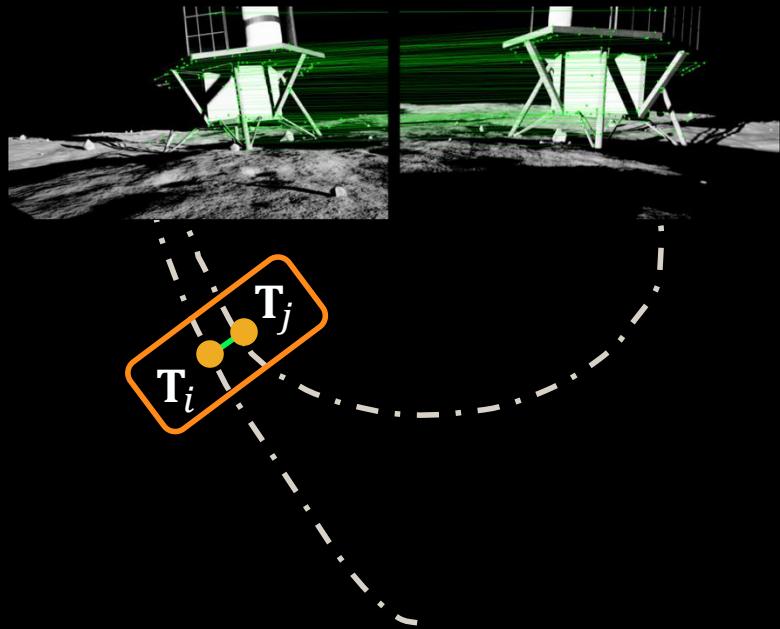
Geometric
(score: 269.6)



Rock
(score: 153.6)

Loop Closure

Detect similar viewpoints and add relative pose constraints to correct drift



Proximity check:

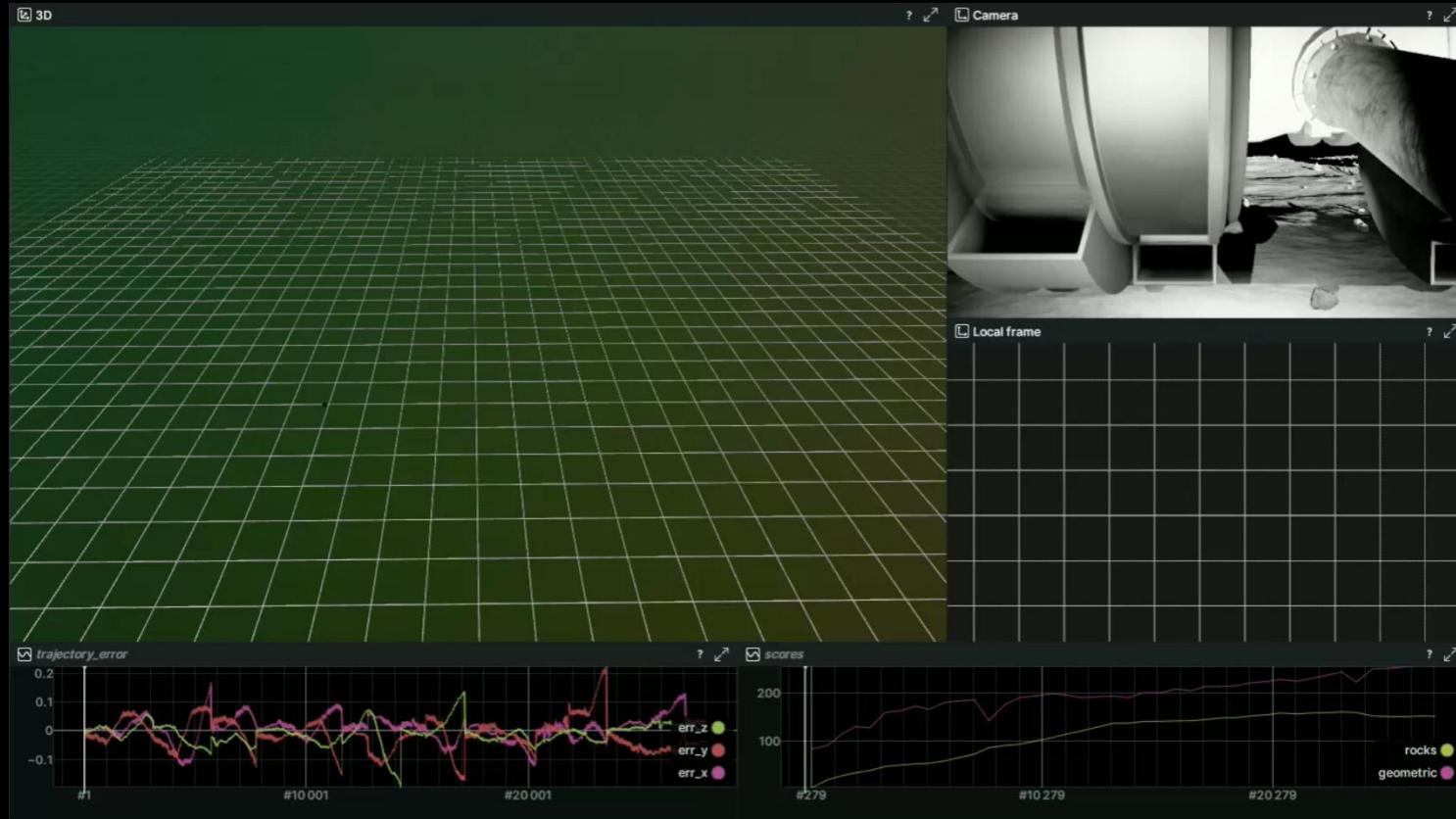
- Distance: L_2 norm
- Angle: rotation matrix error

Relative pose estimation:

- Stereo triangulation and PnP (same as VO)

Loop closure factor added to graph and graph is re-optimized

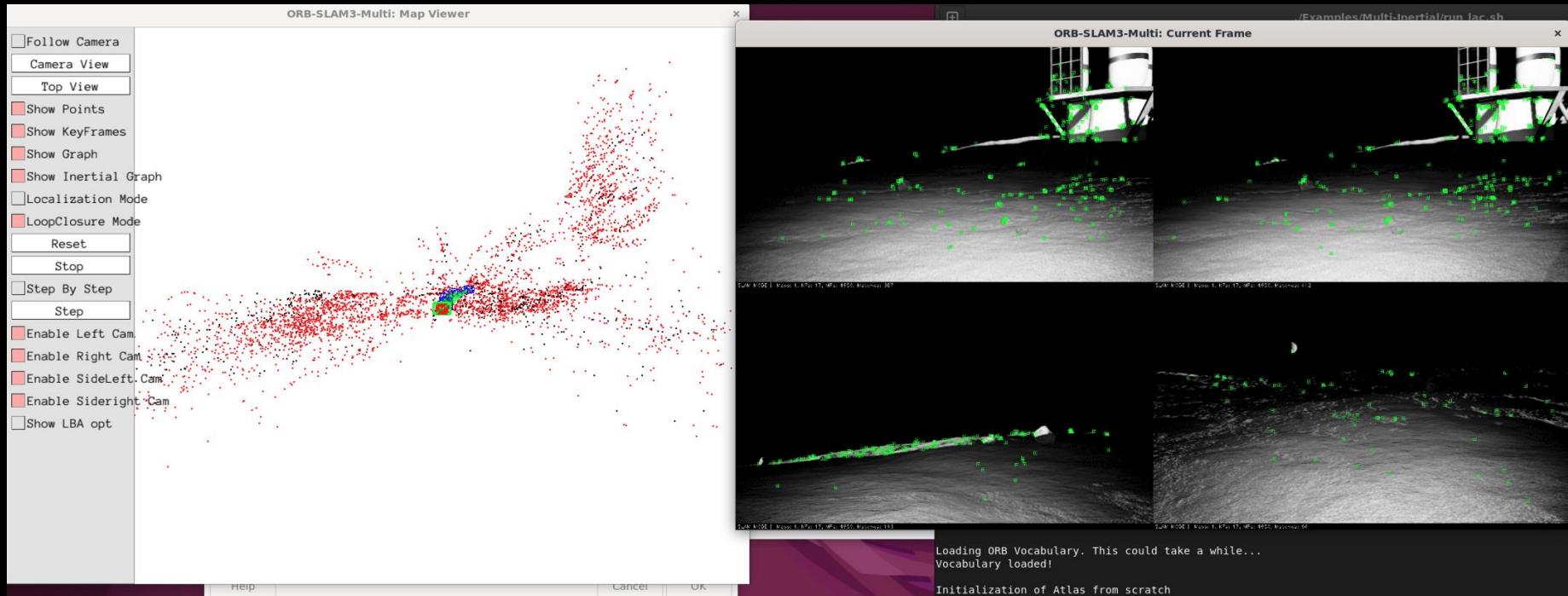
Rerun Visualization (static)



Backup Maneuver

Figure 10: 2D trajectories from two different runs. In the right plot, multiple backup maneuvers were triggered as the planner disengaged from local obstacles. Despite this, our SLAM maintains low localization error through the entire trajectory.

ORB-SLAM3



Competition Spiral

SuperPoint and LightGlue

